
Efficient algorithms for the Zarankiewicz problem

Andrew Kay∗

School of Computing and Digital Technology,
Birmingham City University

April 19, 2016

Abstract

The Zarankiewicz problem asks for the maximum number of 1s in an m×n matrix
with no s×t minor containing only 1s. We present a general algorithm and a specific
algorithm for the case s = t = 2, each substantially more efficient than previous work.
The algorithms are based on a generalisation of Paige–Wexler canonical form for finite
projective planes, and a new connection with symmetric inverse semigroups analogous
to a connection between finite projective planes and symmetric groups. We obtain over
200 new exact values, and correct previously unreported errors in R. K. Guy’s tables.
Finally, we make some observations which may apply to the search for finite projective
planes.

Keywords. Zarankiewicz problem, rectangle-free, forbidden minor, finite projective
plane, extremal combinatorics, computational combinatorics, constraint programming.

1 Introduction

In 1951, Zarankiewicz posed some specific cases of a problem which, more generally, asks for
the maximum number of 1s in an m×n matrix with no s×t minor containing only 1s. [Zar51]
The problem is also stated in extremal graph theory as the maximal number of edges in a
bipartite graph on vertex sets U ,V with

(
|U |, |V |

)
= (m, n) such that no s vertices from

U and t vertices from V span a complete bipartite subgraph. [DHS13]

The problem is difficult in general; exact values known to date are due to a few theorems
establishing exact values for some infinite classes of parameters, a patchwork of upper and
lower bounds none comprehensively sharper than another, ad hoc methods for particular
cases, and more recently by computer search. Most effort has been focused on the case
s = t = 2. The problem remains an active area of research; see e.g. [DHS13, DDR13, FS13,
SP12,Wer12].

∗Electronic address: Andrew.Kay@bcu.ac.uk

1

1.1 Notation

Matrices in this paper have entries in {I ,O} rather than {1, 0}. This unusual choice of
notation is to reduce cognitive dissonance, as in Section 1.3 we will define an ordering with
I < O . The notation also extends more naturally to matrices with entries in semigroups in
Section 3.2. We interpret I as an incidence flag with no arithmetic properties.

The set of natural numbers (including 0) is N, and N∞ = N∪{∞}. The set of m×n matrices
with entries in a set Σ is MatΣ(m, n). The weight w(A) of a matrix A ∈ Mat{I ,O} is its
number of I entries. More generally, we allow a weight function w : Σ → N to be extended
to w : MatΣ(m, n)→ N via the formula

w(A) =
m∑
i=1

n∑
j=1

w(Ai ,j) =
∑
σ∈Σ

|A|σw(σ) (1.1)

where |A|σ is the number of σ entries in A. The specific case has w(A) = |A|I , implying
w(I) = 1 and w(O) = 0.

Definition 1.2. An (s , t)-rectangle is an s×t minor containing only I entries. A matrix
with no (s , t)-rectangles is (s , t)-rectangle-free.

Definition 1.3. z (m, n; s , t) is the maximum weight of an (s , t)-rectangle-free m×n matrix.1

For brevity, in the case s = t = 2 we will simply write rectangle, rectangle-free and z (m, n).
We will leave O entries blank where this aids readability.

When referring to the rows and columns of a particular matrix, we will write Ri for row i
and Cj for column j .

As usual, [n] = {1, 2, . . . , n} and

(
n

k

)
is the binomial symbol. <lex is lexicographic order.

It will sometimes be useful to identify matrices in Mat{I ,O}(m, n) with subsets of [m]× [n];
in this case, (i , j) ∈ A if and only if Ai ,j = I . We also write

• dom A ⊆ [m] for the domain, and ran A ⊆ [n] for the range,

• U 7→ V for the set of partial functions from U to V ,

• U 7� V for the set of partial injections2 from U to V , and

• B ◦ A for backward relational composition,

as in the Z notation. [Spi92]

1Earlier literature (e.g. [Guy69, KST54, Rom75]) refers instead to the minimum weight such that every
m×n matrix has an (s, t)-rectangle. This is of course z (m,n; s, t) + 1.

2Sometimes called partial bijections, or partial permutations.

2

1.2 Bounds and exact values

We summarise a number of theorems establishing bounds and exact values for z (m, n; s , t).
Some theorems are asymmetric in m and n, in that they might give a sharper bound on the
transpose matrix. Clearly z (m, n; s , t) = z (n,m; t , s).

The first result is used in various arguments e.g. in [Guy69,KST54,Rom75].

Definition 1.4. For A ∈ MatΣ(m, n) with a weight function w,

1. The row weight distribution of A is a vector r ∈ Nm with ri = w(Ri).

2. The column weight distribution of A is a vector c ∈ Nn with cj = w(Cj).

Theorem 1.5. Call a vector r ∈ Nm “admissible” if

m∑
i=1

(
ri
t

)
6 (s − 1)

(
n

t

)
(1.6)

Then every (s , t)-rectangle-free matrix has an admissible row weight distribution, and

z (m, n; s , t) 6 max
r

m∑
i=1

ri (1.7)

where the maximum is taken over all admissible vectors.

Since the sum in (1.6) is a convex function of r, the maximum in (1.7) can be attained by
a vector with every |ri − rk | 6 1. Therefore, this bound can be calculated directly without
iterating over admissible vectors.

Note that an admissible vector is not necessarily realisable as the row weight distribution of
an (s , t)-rectangle-free matrix.

Proof. The sum in (1.6) counts the total number of combinations of t columns spanned by
the I entries in each row of A. If the row weight distribution r of A is not admissible, then
by the pigeonhole principle there is a combination of t columns such that A has at least s
rows with I entries in those columns. Hence, A is not (s , t)-rectangle-free.

Therefore an extremal (s , t)-rectangle-free matrix A has an admissible row weight distribu-
tion. w(A) =

∑m
i=1 ri gives the result.

The next theorem achieves equality for m � n, using rows of weight t and t − 1.

Theorem 1.8 (Čulik [Čul56]). If m > (s − 1)

(
n

t

)
, then

z (m, n; s , t) = (t − 1)m + (s − 1)

(
n

t

)

3

The next theorem achieves equality in the case s = t = 2 for some square matrices.

Theorem 1.9 (Reiman [Rei58]). Let n = k 2 + k + 1 for k > 2. Then

z (n, n) 6 (k 2 + k + 1)(k + 1)

and a rectangle-free matrix of this weight must be the incidence matrix of a finite projective
plane of order k.

The only known orders k are the prime powers. The next theorem also uses finite projective
planes, and extends a lower bound of Dybizbański, Dzido & Radziszowski [DDR13].

Theorem 1.10 (Deletion principle). Let n = k 2 + k + 1 where k > 2 is the order of a finite
projective plane. Then for c, d ∈ N, then

z (n − c, n − d) > (k 2 + k + 1− c − d)(k + 1) + Xk(c, d) (1.11)

where Xk(c, d) is the maximum weight of a c×d minor of an incidence matrix of a finite
projective plane of order k. We have

Xk(0, d) = 0

Xk(1, d) = min{d , k + 1}
Xk(2, d) = min{d + 1, 2k + 2} for d > 1

Xk(3, d) = min{d + 3, 3k + 3} for d > 3

Xk(4, d) = min{d + 6, 4k + 4} for d > 6

For k a power of 2, Xk(7, 7) = 21. Values valid for all k are given in the table below.

c, d 1 2 3 4 5 6 7

1 1∗ 2 3
2 3∗ 4 5 6
3 6∗ 7 8 9
4 9 10 12
5 12 14 15
6 16 18

Furthermore, (1.11) is an equality in the cases marked ∗.

Proof. We obtain a rectangle-free matrix satisfying the lower bound by deleting c rows and
d columns from the incidence matrix of a finite projective plane of order k . The weight of
the resulting matrix is given by (1.11) when Xk(c, d) is the weight of the c×d minor of their
intersection, by the inclusion/exclusion principle.

For Xk(1, d) choose any row and any min{d , k + 1} columns intersecting that row.

For Xk(2, d) with d > 1, choose any two rows, the column intersecting both, and any other
min{d − 1, 2k} columns intersecting either.

4

In the remaining cases, by the non-degeneracy axiom of a finite projective plane, there are
four columns C1, . . . ,C4 such that no row intersects any three. There must be six distinct
rows R1, . . . ,R6 intersecting each pair; then the three pairs of rows (R1,R6), (R2,R5) and
(R3,R4) must each intersect in distinct columns C5,C6,C7.

C1 C2 C3 C4 C5 C6 C7


R1 I I I
R2 I I I
R3 I I I
R4 I I I
R5 I I I
R6 I I I

(1.12)

It follows that any incidence matrix of a finite projective plane has (1.12) as a minor, and
therefore has c×d (or d×c) minors of weight Xk(c, d) as given in the table above.

For Xk(3, d) with d > 3, choose the 3×3 minor of weight 6, and any other min{d − 3, 3k}
columns intersecting its rows.

For Xk(4, d) with d > 6, choose the 6×4 minor of weight 12, and any other min{d−6, 4k−8}
rows intersecting its columns.

For k a power of 2, a Fano subplane gives such a 7×7 minor. [Cam95, p. 671]

Equality in the cases marked ∗ is a theorem of Dybizbański et al. [DDR13].

By Čulik’s theorem (Theorem 1.8, [Čul56]) and exhaustion, the values given for Xk(c, d) are
equal to z (c, d) for sufficiently large k , so they give the sharpest possible lower bound using
this method.

In Section 2.4 we will use some other bounds and exact values which are established in
[DHS13,FS13,KST54,Rei58,Rom75]. The remaining theorem is strictly weaker than a bound
of Damásdi, Héger & Szőnyi [DHS13], but can be used dynamically on partial solutions in
Section 2.4, when r is known.

Theorem 1.13.

z (m, n; s , t) 6 max
06r6n

min

rm,

r

+ z (m − 1, r ; s − 1, t)

+ z (m − 1, n − r ; s , t)


Proof. Let r = w(Ri) be the greatest row weight in an extremal (s , t)-rectangle-free matrix A.
Trivially w(A) 6 rm.

Let MI and MO be the minors formed of all rows except Ri , and the columns Cj with Ai ,j = I
and O respectively. MI is (m−1)×r and (s−1, t)-rectangle-free, and MO is (m−1)×(n−r)
and (s , t)-rectangle-free. The result follows as w(A) = r + w(MI) + w(MO).

5

Lastly we note that z (m, n; s , t) > z (m − 1, n; s , t) + t − 1, and if m > s + 1 and n > t + 1
then z (m, n; s , t) > z (m − 1, n − 1; s , t) + s + t − 1. This bound is usually not sharp, but
is exact in infinitely many cases.3

1.3 Lex-minimal form

Reiman’s theorem (Theorem 1.9, [Rei58]) states that finite projective plane incidence matrices
are extremal rectangle-free matrices. We begin by considering these matrices in Paige–Wexler
canonical form. [PW53]

Example 1.14. The finite projective plane of order 3 in Paige–Wexler canonical form.

I I I I
I
I
I

I I I
I I I

I I I
I
I
I

I
I

I

I
I

I

I
I

I
I
I
I

I
I

I

I
I

I

I
I

I
I
I
I

I
I

I

I
I

I

I
I

I

Paige & Wexler described their canonical form directly, then showed that any finite projective
plane incidence matrix can be put into this form by row/column permutations. However,
their canonical form can be described more succintly, and more generally.

Definition 1.15. For a total order < on MatΣ(m, n), the <-minimal form of a matrix is the
<-minimal member of its orbit under row and column permutations, and for square matrices,
transposition.4

If < is a total order on Σ, we define lex order on matrices by comparing them on the first
row in which they differ.5 We are interested in <lex-minimal form.

For Σ = {I ,O} we define I < O . In this case, finite projective plane incidence matrices in
lex-minimal form are necessarily in Paige–Wexler canonical form.6 The lex-minimal form of
a rectangle-free matrix has clear similarities with Paige–Wexler canonical form, as illustrated
in the following example.

3E.g. in Čulik’s theorem (Theorem 1.8, [Čul56]), or adding one row to a finite projective plane [DHS13].
4Or, in general, the symmetry group of the problem space.
5Since the order is defined only for matrices of equal dimensions, this is equivalent to <lex on the strings

formed by concatenating their rows.
6A formal proof of this is possible either directly, or using Reiman’s theorem [Rei58] and various results

from this paper.

6

Example 1.16. A matrix in lex-minimal form satisfying z (16, 22) = 83.

I I I I I I
I
I

I I I I I
I I I I

I
I
I

I
I

I

I
I

I

I I
I I

I I
I
I
I

I
I

I

I
I

I
I

I
I

I

I I

I
I
I

I
I

I

I
I

I
I

I

I

I

I
I

I
I
I

I
I

I

I
I

I I

I
I

I

I
I

I I I I I I

The use of lex order for symmetry reduction in matrix search problems has been noted e.g.
in [FFH+02] which, incidentally, uses z (4, 3) = 7 as an example — though the authors do
not identify the Zarankiewicz problem by name. In Section 2.3 we will use an alternative
ordering to achieve greater algorithmic efficiency for the Zarankiewicz problem.

1.4 Properties of lex-minimal form

Let A be a matrix in lex-minimal form, relative to a total order < on the entry set Σ.

The main lemma resembles an existence proof in [FFH+02].

Lemma 1.17. The rows of A are in lex order, and the columns of A are in lex order.

Proof. Suppose Ri >lex Rk for i < k . Then swapping rows i and k yields a matrix lower in
lex order; a contradiction.

Suppose Cj >lex Cl for j < l . Then let i be the first row in which Cj and Cl differ. Swapping
columns j and l leaves rows above i unchanged, but yields a row i lower in lex order; a
contradiction.

Lemma 1.18. If I ∈ Σ is <-minimal, then every |Ri |I 6 |R1|I .

Proof. If not, then swapping rows R1 and Ri and sorting the columns in lex order yields a
first row lower in lex order; a contradiction.

The next lemma applies only to rectangle-free matrices, and will be used in Section 3.

Lemma 1.19. Suppose also that Σ = {I ,O} with I < O, and A is rectangle-free. Then for
all i < k 6 w(C1), we have w(Ri) > w(Rk).

7

Proof. Since i < k 6 w(C1) and the rows are in lex order, we must have (i , 1) ∈ A and
(k , 1) ∈ A. As A is rectangle-free, Ri and Rk do not have a common I in any other column.
Since the columns of A are in lex order, the matrix must be as in the following diagram:

R1

Ri

Rk

I · · · · · ·I
I I · · ·I
I I · · · · ·I

 7→
R1

Ri

Rk

I · · · · · ·I
I I · · · · ·I
I I · · ·I


If w(Ri) < w(Rk), then swapping rows i and k and sorting the columns in lex order leaves
rows above i unchanged, but yields a row i lower in lex order; a contradiction.

Lemmas 1.18 and 1.19 are not true of the transpose, as seen in Example 1.16.

2 General algorithm

In this section we describe an algorithm for finding extremal (s , t)-rectangle-free matrices, as
a specific instance of an abstract model for algorithms which solve combinatorial or constraint
programming problems on matrices.

2.1 Abstract model

The algorithm is defined by matrix dimensions m, n, an entry set Σ, a weight function
w : MatΣ(m, n)→ N, a set of procedures enforcing constraints, a set of bounding functions,
and a guess function.

• A partial solution is a matrix P ∈ MatPΣ(m, n). The entry Pi ,j ⊆ Σ contains the
symbols which have not (yet) been eliminated as possible entries in completions of P .

• A matrix A ∈ MatΣ(m, n) is a completion of a partial solution P if every Ai ,j ∈ Pi ,j ,
and A is unchanged by the procedures enforcing constraints.7

• An entry Pi ,j is confirmed if |Pi ,j | = 1. A partial solution is complete if all its entries
are confirmed, and consistent if every |Pi ,j | > 0.

• A procedure enforcing a global or local constraint operates on a partial solution P . If
the procedure enforces a local constraint, it also takes the indices of a fresh entry of P
as parameters. The procedure transforms P into a new partial solution P ′ with every
P ′i ,j ⊆ Pi ,j . An entry (i , j) is fresh if it is confirmed in P ′ but not in P .

• A bounding function w : MatPΣ(m, n) 7→ N∞ is defined on consistent partial solutions.
w(P) gives an upper bound on the weight of a completion, i.e. w(A) 6 w(P) whenever
A is a completion of P .

7We regard A as a complete, consistent partial solution by treating its entries as singleton sets.

8

• A guess function G : MatPΣ(m, n) 7→ [m]× [n]×Σ is defined on incomplete consistent
partial solutions. G(P) selects an entry and a symbol to guess once no further progress
can be made otherwise. If G(P) = (i , j , σ) then we require |Pi ,j | > 1 and σ ∈ Pi ,j .

Constraints must be used to enforce the rules of the problem being solved, but can also be
used to break symmetry. In this paper, global constraints are not used.

The algorithm itself is a recursive tree search, using constraint propagation and bounds to
eliminate branches. The algorithm is described below as a procedure operating on a partial
solution P , a subset of fresh indices F ⊆ [m]× [n], a lower bound L ∈ N and an upper bound
U ∈ N∞. By default, every Pi ,j = Σ, F = ∅, L = 0 and U = ∞. The values of L and
U are preserved during recursive calls and backtracks. Backtracking from the initial call is
equivalent to terminating.

1. Repeat until no changes are made to P :

(a) While F is non-empty: take an (i , j) ∈ F , delete it from F , and then enforce each
local constraint on P at (i , j), inserting any fresh indices into F .

(b) Enforce each global constraint on P , inserting any fresh indices into F .

If P becomes inconsistent during this loop, then reject P and backtrack.

2. For each bounding function w : if w(P) < L then reject P and backtrack.

3. If P is complete:

(a) If w(P) > L, output P ; otherwise, reject P and backtrack.

(b) If w(P) = U then terminate; otherwise, let L = w(P) + 1 and backtrack.8

4. Let (i , j , σ) = G(P). Copy P to form a new partial solution P ′, then let P ′i ,j = {σ}.

5. Recursively solve P ′, using F ′ = {(i , j)}.

6. Delete σ from Pi ,j . If now |Pi ,j | = 1, insert (i , j) into F .

7. Repeat from 1.

The model is implemented in a Java package written by the author. A more thorough
investigation of this abstract model will follow in a future paper; for now, we note that the
algorithm’s efficiency depends on

• The ability of the constraints to eliminate possible entries from partial solutions, so
that they do not need to be eliminated by branching,

• The ability of the constraints to reject branches which, by symmetry, are isomorphic
to other branches searched,

8If all solutions are desired, this step can be modified appropriately.

9

• The ability of the bounding functions to quickly detect fruitless branches,

• The ability of the guess function to discover good solutions quickly so that the lower
bound L can be improved, and to discover latent inconsistencies quickly (i.e. when no
completion exists),

among other factors. These should be considered together; for example, if G always guesses
in the first incomplete row, then a bounding function which uses completed rows will be more
useful than a bounding function using completed columns. Also, there is often a choice of
which factor to improve by exploiting symmetry.

Since the number of branches is typically exponential, any polynomial-time improvement in
these factors is likely to be (asymptotically) worth the investment.

2.2 Constraints and bounds for hereditary problems

This section applies generally to combinatorial optimisation problems on matrices for which
the weight function is extended from w : Σ → N to w : MatΣ → N as in (1.1), and which
are hereditary in the sense that if a matrix is a valid solution, then its minors also are. This
class of problems includes forbidden-minor problems such as the Zarankiewicz problem.

For generality, we write W (m, n) = max w(A), where the maximum is taken over valid
matrices. For the Zarankiewicz problem, W (m, n) = z (m, n; s , t). The following result
generalises upper bounds given in [Guy68] and [DHS13].

Proposition 2.1 (Density principle). For 0 6 c 6 m and 0 6 d 6 n,

W (m, n) 6
mn

cd
W (c, d) (2.2)

and

W (m, n) 6W (c, n) + (m − c)

⌊
W (c, n)

c

⌋
(2.3)

Proof. Let A be an extremal m×n solution. Then(
m − 1

c − 1

)(
n − 1

d − 1

)
w(A) =

∑
M

w(M) 6

(
m

c

)(
n

d

)
W (c, d)

where the sum ranges over all c×d minors M of A. When c = m − 1, (2.3) is a special case
of (2.2) with d = n, where the floor function may be used as W is integer-valued. The result
follows by induction on m − c.

Next we show results applying to partial solutions. Consider the lower and upper bounds

w(P) =
m∑
i=1

n∑
j=1

min
σ∈Pi,j

w(σ) 6 w(A) 6 w(P) =
m∑
i=1

n∑
j=1

max
σ∈Pi,j

w(σ) (2.4)

which follow directly from (1.1) whenever A is a completion of P . The procedure enforcing
the constraint should delete possible entries from P as appropriate.

10

Constraint 2.5. If (i , j) is fresh and W (m, n) > L, then require w(Ri) > L−W (m−1, n),
and w(Cj) > L−W (m, n − 1).

Proof. If w(A) > L then deleting Ri yields an (m − 1)×n solution such that

L− w(Ri) 6 w(A)− w(Ri) 6W (m − 1, n)

Similarly for Cj .

As in Section 2.1, finding a solution allows L to be increased, improving the ability of the
constraint to eliminate the rest of the search tree.

Bound 2.6. If A is the completion of a partial solution P, then

w(A) 6 w(P) = W (c, d) +
∑
A\M

w(Ai ,j)

where M is a c×d minor of A containing all of the entries which are unconfirmed in P, and
the sum ranges over entries not in M .

Proof. By (1.1) we have w(A) = w(M) +
∑

A\M w(Ai ,j), where w(M) 6W (c, d).

2.3 Weightlex order

We look for solutions not in lex-minimal form, but in a similar form which takes better
advantage of symmetry. This section applies generally to matrix search problems for which
the weight function is extended from w : Σ → N to w : MatΣ → N as in (1.1), and the set
of valid matrices is closed under row and column permutations, and in the case of square
matrices, transposition.

Definition 2.7. Let A,A′ ∈ MatΣ(m, n) where Σ has a total order and a weight function.

Weightlex order: A <w lex A′ if either w(A) > w(A′), or w(A) = w(A′) and A <lex A′.

Row-weightlex order: A <row
w lex A′ if Ri <w lex R′i on the first row in which they differ.

These orders have two purposes: firstly to try partial solutions of greater potential weight
first, and secondly to allow assumptions about the row weights of partial solutions.

We are mainly interested in row-weightlex order. We have A<row
w lex A′ if either w(Ri) > w(R′i),

or w(Ri) = w(R′i) and Ri <lex R′i , where i is the index of the first row in which A and A′

differ. We proceed by showing properties of row-weightlex-minimal form.

Let A be a matrix in <row
w lex-minimal form relative to a total order < and weight function w

on the entry set Σ.

Lemma 2.8. The rows of A are in weightlex order, and the columns of A are in lex order.

11

Proof. Suppose Ri >w lex Rk for i < k . Then swapping rows i and k yields a lower row i in
row-weightlex order; a contradiction.

Suppose Cj >lex Cl for j < l . Then let i be the first row in which Cj and Cl differ. Swapping
columns j and l leaves rows above i unchanged, but yields an equal weight row i lower in
lex order; a contradiction.

We immediately get a bounding function, which can be applied in the general case of searching
for solutions in row-weightlex-minimal form.

Bound 2.9. Let P be a partial solution of A, with row i of P complete for all i 6 k. Then

w(A) 6 w(P) =
k∑

i=1

w(Ri) + (m − k) w(Rk)

Proof. By Lemma 2.8, w(Ri) 6 w(Rk) for i > k , so
∑m

i=k+1 w(Ri) 6 (m − k) w(Rk).

We also describe procedures enforcing the constraints given by Lemma 2.8, using the lower
and upper bounds defined in (2.4). The procedures enforcing the constraints should delete
possible entries from P as appropriate.

Constraint 2.10. If Ri ,Ri+1 are consecutive rows with a fresh entry, require w(Ri) > w(Ri+1).
If this is an equality, require Ri 6lex Ri+1.

We may have other reasons that two rows must have equal weight, such as Constraint 2.5.
In this case we can enforce both the required weights and the lex ordering separately.

Constraint 2.11. If Cj ,Cj+1 are consecutive columns with a fresh entry, require Cj 6lex Cj+1.

We also define a guess function which enables effective use of Bound 2.9 and Constraint 2.10.

Definition 2.12. The guess function Glex minimises i , then j , then σ, subject to the require-
ments of a guess function.

Guesses made by Glex fill in one row at a time from top to bottom. This is advantageous, as
weightlex does less work on incomplete rows than lex. However, the difference is more than
made up for by Bound 2.9; additionally, local weightlex breaks some symmetries which local
lex does not (e.g. as in Lemma 1.19).

Weightlex orders and Glex are more effective together when σ < τ implies w(σ) > w(τ), as
partial solutions of greater weight will be tried first. This property holds for Σ = {I ,O},
and also for the entry sets we will use in Section 3.1.

12

2.4 General algorithm for the Zarankiewicz problem

The algorithm for general s , t > 2 is a specific instance of the model in Section 2.1. We look
for solutions in row-weightlex-minimal form, and use

• Lower and upper bounds L and U as in Section 1.2, and Proposition 2.1,9

• The constraints 2.5, 2.10, 2.11 and 2.13,

• The bounding functions 2.6, 2.9, 2.14 and 2.15, and

• The guess function Glex as in Definition 2.12.

Whereas the definitions in Sections 2.2 and 2.3 are general, the definitions here are specific to
the Zarankiewicz problem. Using the following constraint, the confirmed entries of a partial
solution P remain (s , t)-rectangle-free.

Constraint 2.13. If I is fresh at (i , j) then for each s×t minor including (i , j), if all but
one of this minor’s entries are confirmed as I , delete I from the remaining entry.

Proof. Suppose P has an s×t minor of confirmed I entries. Let Pi ,j and Pk ,l be the most
and second-most recently confirmed entries respectively. Then when Pk ,l was confirmed, I
would have been deleted from Pi ,j ; a contradiction.

Bound 2.9 eliminates partial solutions where some row weights are too small; the following
bounding functions eliminate those where some row weights are too large.

Bound 2.14. Let P be a partial solution of A, with row i of P complete for all i 6 k. Then

w(A) 6 w(P) = max
r

m∑
i=1

ri

where the maximum is taken over all admissible vectors with ri = w(Ri) for i 6 k.

Proof. Similar to Theorem 1.5. As before, the bound can be calculated directly without
iterating over admissible vectors.10

Bound 2.15. Let P be a partial solution of A, with R1 complete and w(R1) = r . Then

w(A) 6 w s,t(P) =

r

+ min
{

w s−1, t(MI), z (m − 1, r ; s − 1, t)
}

+ min
{

w s,t(MO), z (m − 1, n − r ; s , t)
}

where MI and MO are the minors of P as in Theorem 1.13.

9We increment L by 1 prior to the search; if no solution is found, the lower bound given in Section 1.2 is
exact. As every lower bound in Section 1.2 is constructive, there is no disadvantage in doing this.

10If Constraint 2.5 gives a minimum row weight, there may be no admissible vectors. If so, we reject P .

13

Proof. Similar to Theorem 1.13, but note that the rows of MI and MO are not necessarily
in descending weight order themselves, so rm is not an upper bound. We do not need to
recurse on minors with fewer than s rows or t columns, as the recursive bound on the minor
will equal the upper bound of (2.4).

Finally we note that Glex prefers to try rows of greatest weight first; this is advantageous
except in the first row, as (heuristically by Theorem 1.5) we expect the optimal row weight
distribution to be approximately uniform. Therefore we iteratively run the algorithm starting
from partial solutions with confirmed first rows of weight t 6 r 6 n for increasing r , so that
the optimal solution is found sooner, and hence the improved lower bound L is available for
more of the search.

We present results and analysis of this algorithm in Section 4.

3 Scaffolds

In this section we consider the case s = t = 2. The following is a motivating example.

Example 3.1. The (improper) scaffold of Example 1.16. mO = 0.

p = 5︷ ︸︸ ︷ n1 = 5︷ ︸︸ ︷ n2 = 4︷ ︸︸ ︷ nO = 7︷ ︸︸ ︷
q = 2

{ I I I I I I
I
I

I I I I I
I I I I

m1 = 3

{ I
I
I

m2 = 3

{
I
I
I

m3 = 3

{ I
I
I

m4 = 3

{
I
I
I

m5 = 1 { I

This scaffold is “improper” as q < m1.

Definition 3.2. A scaffold is a tuple S = (p, q ,m,n,mO , nO) where p, q ,mO , nO ∈ N,
m ∈ Np and n ∈ Nq , such that q > m1 > · · · > mp and p > n1 > · · · > nq .

We say S is the scaffold of a matrix A ∈ Mat{I ,O}(m, n) if the first q + 1 rows and p + 1
columns of A are as in Example 3.1. In this case we must have

m = 1 + q +

p∑
i=1

mi + mO and n = 1 + p +

q∑
j=1

nj + nO (3.3)

14

We say S is an m×n scaffold if m and n satisfy (3.3). We intend to search for extremal
rectangle-free matrices by their scaffolds. Let z (S) be the maximum weight of a rectangle-
free matrix with scaffold S.

Theorem 3.4. z (m, n) = max
S

z (S), where the maximum is taken over all m×n scaffolds.

Proof. Trivially every z (S) 6 z (m, n).

Let A be an extremal rectangle-free m×n matrix in lex-minimal form. By Lemmas 1.17 and
1.19, A has a (possibly improper) scaffold. We proceed by permuting rows and columns of
A so that its scaffold is proper.

Let p + 1 = w(R1); then by Lemma 1.18, every w(Ri) 6 p + 1. Sort the first p + 1 columns
in descending weight order, then sort the rows in lex order. The first row is unchanged, and
so the first p + 1 columns are as required.

Let q +1 = w(C1); sort the first q +1 rows in descending weight order, then sort the columns
in lex order. The first p +1 columns are unchanged, and so the first q +1 rows are as required.

Finally, let mi + 1 = w(Ci+1) for 1 6 i 6 p, and nj + 1 = w(Rj+1) for 1 6 j 6 q , and
determine mO and nO by (3.3). The resulting scaffold S has z (S) > w(A) = z (m, n) by
construction.

3.1 Scaffold quotient matrices

Referring back to Example 1.14, the scaffold p = q = 3, m = n = (3, 3, 3), mO = nO = 0
defines a natural partition on the rows and columns of the matrix, resulting in a block form
for the remaining 9×9 minor.

Example 3.5. Let I3 =
(

I
I
I

)
, J3 =

(
I
I

I

)
and K3 =

(
I

I
I

)
. The scaffold quotient

matrix of Example 1.14 is

Q =

I3 I3 I3

I3 J3 K3

I3 K3 J3


where Q is a p×q matrix, and its entries Qi ,j are mi×nj blocks.

To avoid confusion, we refer to the entries of Q as blocks rather matrices. If σ is a block,
then its height is a(σ) = max domσ and its width is b(σ) = max ranσ. We will refer to the
rows and columns of σ as subrows and subcolumns. Subrows and subcolumns of Q are the
concatenations of the subrows and subcolumns of the blocks in a single row or column of Q
respectively.

Note that we can have e.g. some nj = 0; these need not be represented as columns in the
scaffold quotient matrix. On the other hand, we could have e.g. nO > 0; this corresponds
with nO additional columns of maximum block width 1. mi = 0 and mO > 0 are similar.

15

Therefore in general the scaffold quotient matrix is µ×ν, where µ = p̄ + mO and ν = q̄ + nO ,
and p̄ and q̄ are the numbers of non-zero entries in m and n respectively.

Let ai and bj be the maximum allowed block height in row i and block width in column j
respectively:

ai =

{
mi for i 6 p̄

1 for i > p̄
and bj =

{
nj for j 6 q̄

1 for j > q̄
(3.6)

Definition 3.7. An abstract scaffold is a tuple A = (µ, ν, a,b) where µ, ν ∈ N, a ∈ Nµ and
b ∈ Nν.

The above defines a natural mapping S 7→ A.

If we require the expansion e(S,Q) ∈ Mat{I ,O}(m, n) of a scaffold S and scaffold quotient
matrix Q to be rectangle-free, this imposes constraints on the blocks.

Theorem 3.8. The expansion e(S,Q) is rectangle-free if and only if

1. Every block Qi ,j has at most one I entry per subrow and per subcolumn, and

2. Every 2×2 minor of Q has a rectangle-free expansion.

Proof. Let A = e(S,Q). By construction, either two or four of the I entries of a rectangle
in A must be in e(Q) ⊂ A.

1. If the number is two, then the other two I entries in e(S) ⊂ A must be in the same
row or column, and hence the two I entries in Q must be in the same subrow of the
same column of Q , or the same subcolumn of the same row of Q respectively.

2. If the number is four, then by 1. they must be in distinct blocks forming a 2×2 minor
of Q .

The converse is trivial.

A formal definition is now possible. For brevity we write quotient matrix.

Definition 3.9. A quotient matrix for an abstract scaffold A (or a scaffold S) is a matrix
Q ∈ MatΣ(µ, ν) such that each block Qi ,j has a(Qi ,j) 6 ai and b(Qi ,j) 6 bj . The entry set
Σ ⊆ Mat{I ,O}(max ai , max bj) consists of the blocks satisfying 3.8.1.

A quotient matrix Q is rectangle-free if it satisfies 3.8.2.

Definition 3.10. z (A) is the maximum weight of a rectangle-free quotient matrix for the
abstract scaffold A.

16

For convenience we use the same entry set Σ ⊆ Mat{I ,O}(max ai , max bj) for all entries, even
those with smaller block dimensions. This is achieved by identifying e.g.(

I O O
O I O
O O O

)
=

(
I O O
O I O

)
=

(
I O
O I
O O

)
since they are equal as subsets of [3]× [3], [2]× [3] and [3]× [2] respectively.

It follows from Lemma 3.8 that if a rectangle-free matrix A has a scaffold S, then it also has
a rectangle-free quotient matrix Q . We also have w(A) = w(S) + w(Q), where the scaffold
weight w(S) is the number of I entries in its expansion,

w(S) = 1 + p + q +

p∑
i=1

mi +

q∑
j=1

nj (3.11)

It follows that z (S) = w(S) + max w(Q) where the maximum is taken over rectangle-free
quotient matrices Q for A ←[S, and we can extend Theorem 3.4 to give

z (m, n) = max
S

{
w(S) + z (A)

}
= max

S

{
w(S) + max

Q
w(Q)

}
(3.12)

3.2 Connection with symmetric inverse semigroups

Identifying blocks with subsets of [a] × [b], a block has at most one I entry per subrow if
and only if it is a partial function, and at most one I entry per subcolumn if and only if this
partial function is injective.

Therefore, the entry set Σ of a quotient matrix can be identified with the set of partial
injections [a] 7� [b]. Furthermore, the rectangle-free property can be stated algebraically,
using function composition. The following theorem resembles an observation of Montaron on
finite projective planes. [Mon85]

Theorem 3.13. A quotient matrix is rectangle-free if and only if it has no minor
(
α β
γ δ

)
such

that γ ◦ δᵀ ◦ β ◦ αᵀ has a fixed point.

Proof. Suppose a minor
(
α β
γ δ

)
contains a rectangle given by subrow i of α, β, subrow k of

γ, δ, subcolumn j of α, γ and subcolumn l of β, δ. Then αᵀ(j) = i , β(i) = l , δᵀ(l) = k and
γ(k) = j , so j is a fixed point.

Conversely, if j is a fixed point of γ ◦ δᵀ ◦ β ◦ αᵀ then let i = αᵀ(j), l = β(i) and k = δᵀ(l).
We must have γ(k) = i , hence i , k and j , l define a rectangle as before.

Note that γ ◦ δᵀ ◦ β ◦ αᵀ = (γ ◦ δᵀ) ◦ (α ◦ βᵀ)ᵀ. Consequently, we can evaluate the compati-
bility relation in 3.8.2 by three applications of the mapping (σ, τ) 7→ σ ◦ τ ᵀ, which can be
precomputed and cached in O

(
|Σ|2

)
time and storage rather than the näıve O

(
|Σ|4

)
. This

17

optimisation is necessary, as the fourth power of

|Σ| =
min{a,b}∑

k=0

(
a

k

)(
b

k

)
k !

would be infeasible even for small a, b.

If a > b then in general σ ◦ τ ᵀ /∈ Σ. In this case we can use a similar construction based on
the mapping (σ, τ) 7→ σᵀ ◦ τ .

In the case a = b, the entry set is I[a], the symmetric inverse semigroup acting on [a].
In general, Σ is a subset of the symmetric inverse semigroup acting on [max{a, b}]. This
connection may open up the Zarankiewicz problem to theoretical advances using algebraic
approaches. For an overview of symmetric inverse semigroups, see [Lip96].

It is natural to generalise the Zarankiewicz problem to matrices with blocks as entries.

Definition 3.14. z (µ, ν | a, b) is the maximum weight of a rectangle-free µ×ν quotient
matrix with entries in [a] 7� [b].

Equivalently, z (µ, ν | a, b) = z (A), where A is the µ×ν abstract scaffold with a = (a, . . . , a)
and b = (b, . . . , b). We will investigate this generalisation further in Section 5.

3.3 Constraints and bounds on scaffolds

The number of m×n scaffolds11 grows very quickly as a function of m, n. In this section we
describe constraints and bounds which can be used to reject the vast proportion of scaffolds
as candidates in (3.12), either by showing directly that z (S) < z (m, n), or that z (S) 6 z (S ′)
for another scaffold S ′. To avoid circular reasoning in the latter case, we require that S ′
precedes S in scaffold order.

Definition 3.15. Scaffolds S,S ′ are compared in scaffold order by S ′ <sc S if

• p ′ > p, or

• p ′ = p and q ′ > q, or

• . . ., q ′ = q, and
∑p

i=1 m ′i >
∑p

i=1 mi , or

• . . .,
∑p

i=1 m ′i =
∑p

i=1 mi , and m′ >lex m, or

• . . ., m′ = m, and
∑q

j=1 n ′j >
∑q

j=1 nj , or

11An exact formula for the number of m×n scaffolds is

n−1∑
x=0

m−1∑
y=0

(
n−x−1∑
N=0

p(x , y ,N)

)(
m−y−1∑
M=0

p(y , x ,M)

)

where p(x , y ,N) is the number of partitions of N into at most y parts each of size at most x .

18

• . . .,
∑q

j=1 n ′j =
∑q

j=1 nj , and n′ >lex n.

This is a total order, as mO and nO are determined by (3.3). We will not necessarily search
for quotient matrices of scaffolds in this order.

Proposition 3.16. Let r and c be minimum row and column weights respectively, as in
Constraint 2.5. If S = (p, q ,m,n,mO , nO) is a candidate in Theorem 3.4, we can require

1. p + 1 > r and every nj + 1 > r , similarly q + 1 > c and every mi + 1 > c.

2. (a) If m = n, then p > q.

(b) If m = n and p = q, then
∑p

i=1 mi >
∑q

j=1 nj .

(c) If m = n, p = q, and
∑p

i=1 mi =
∑q

j=1 nj , then m>lex n.

3. mO = 0 or every mi > 0, similarly nO = 0 or every nj > 0.

4. If p > 2 and q > 2, then either every mi > 0 or every nj > 0.

Proof.

1. Trivial.

2. If not, then Sᵀ = (q , p,n,m, nO ,mO) precedes S in scaffold order.

3. If not, form a new m×n scaffold S ′ by replacing the first mi = 0 7→ 1 and decreasing
mO by 1. Then w(S ′) = w(S)+1, but both S and S ′ map to the same abstract scaffold,
so they have the same maxQ w(Q). Therefore z (S) < z (S ′).

4. If not, then given a matrix achieving z (S), delete the I entries at (1, p+1) and (q +1, 1)
and insert I entries at (2, p + 1), (q + 1, 2) and (q + 1, p + 1) as below.

I I I ∗
I · · ·
I ∗

...
. . .

7→

I I
I I ∗ · · ·

I ∗ I ∗
...

. . .

The affected entries are labelled ∗. This yields an m×n matrix of weight z (S)+1 which
is rectangle-free, as Rq+1 and Cp+1 are otherwise empty.

Proposition 3.17. The following are upper bounds for z (S).

1. (m − q)(p + 1) + q +
∑q

j=1 nj .

2. (a) w(S) + z (m − q − 1, n − p − 1).

(b) 1 + p + q +
∑p

i=1 mi + z (m − 1, n − p − 1), and the transpose.

3. Bound 2.14 with rows of weight p + 1 and each ni + 1, and the transpose.

4. w(S) +
∑µ

i=1

∑ν
j=1 min{ai , bj}.

19

Proof.

1. If a rectangle-free matrix A with scaffold S has greater weight, it must have a row of
weight > p + 1. The lex-minimal form of A has a scaffold S ′ with p ′ > p, so S ′ <sc S.
We also have z (S ′) > w(A) = z (S).

2. Follows directly from Bound 2.6.

3. Follows directly from Bound 2.14.

4. Follows directly from (2.4), using w(A) = w(S) + w(Q).

The bound in Proposition 3.17.4 is effective for eliminating scaffolds with small p, q and large
mi , nj , but overestimates the potential weight for scaffolds with large p, q and small mi , nj .
If the abstract scaffold A ←[S has a c×d minor of 1×1 blocks, then the upper bound given
by Proposition 3.17.4 for the weight of this minor is cd . This bound could easily be improved
to z (c, d). We can apply this reasoning to other block sizes.

Definition 3.18. If A = (µ, ν, a,b) is an abstract scaffold with c rows of block height a and
d columns of block width b, then

1. The band A|a is the abstract scaffold
(
c, ν, (a, . . . , a),b

)
.

2. The stack A|b is the abstract scaffold
(
µ, d , a, (b, . . . , b)

)
.

3. The box A|ab is the abstract scaffold
(
c, d , (a, . . . , a), (b, . . . , b)

)
.

If Q is a quotient matrix for A, then Q |a , Q |b and Q |ab are the corresponding minors.

We now give upper bounds for z (A) using bands, stacks and boxes, and hence upper bounds
for z (S) = w(S) + z (A).

Proposition 3.19. Let A be an abstract scaffold. Then

1.
∑
a

∑
b

z (A|ab) 2.
∑
a

z (A|a) 3.
∑
b

z (A|b)

are upper bounds for z (A), where the sums range over block heights and widths.

Proof. Given an extremal rectangle-free quotient matrix Q for A, we have

z (A) = w(Q) =
∑
a

∑
b

w(Q |ab) 6
∑
a

∑
b

z (A|ab)

2. and 3. are similar.

20

Note that z (A|ab) = z (c, d | a, b). These values can be precomputed and cached using
the algorithm in Section 3.5. In contrast, the bounds on bands and stacks are unlikely to
already be in the cache, and are the most computationally expensive, so they should only be
computed if other bounds do not eliminate the scaffold first.

If a or b is (almost) uniform, then Q |a or Q |b respectively may be (almost) the whole quotient
matrix. In this case, for efficiency reasons we do not compute exact values for 2. or 3.12

Since any quotient matrix with only one row is necessarily rectangle-free, (2.4) gives an exact
upper bound for a band of one row. The same applies for stacks of one column.

Finally, we give a bound on rows and columns which is computationally cheap, and may be
applied in Propositions 3.17.1 and 3.19.

Proposition 3.20. If (S,Q) is a candidate in Theorem 3.4 and mi = q, then we can assume
that w(Ri) 6

∑q
j=1 nj . Similarly for columns with nj = p.

Proof. Suppose A = e(S,Q) is an extremal solution for z (S), and the q subrows of Ri of Q
have weights r1, . . . , rq . Form a new matrix A′ by swapping the corresponding q rows of A
with rows 2, . . . , q + 1 of A, then sorting them in descending weight order, as in the example
below. Finally, sort the columns in lex order.

I I I

n = (1, 1)

{
I I
I I

r = (1, 2)

{
I I
I I I

...
...

. . .

7→

I I I

r′ = (2, 1)

{
I I I
I I{

I I
I I

...
...

. . .

The resulting matrix A′ has scaffold S ′ formed by replacing n in S with the sorted r′. We
also have z (S ′) > w(A′) = w(A) = z (S). If w(Ri) =

∑q
k=1 rk >

∑q
j=1 nj then S ′ <sc S, so S

can be rejected. The result for columns with nj = p is similar.

3.4 Quotient-weightlex-minimal form

As before, we define an ordering on solutions, then show results about the minimal form
which can be used to define effective constraints and bounding functions.

Definition 3.21. Quotient matrices Q ,Q ′ for the same abstract scaffold A are compared in
quotient-weightlex order by Q <qu Q ′ if, on the first row in which they differ,

• w(Ri) > w(R′i), or

12In fact, since not all of the constraints in Section 3.5 can be imposed on individual bands or stacks,
computing exact value of z (A|a) or z (A|b) may even be slower than computing z (S). However, in many
cases the upper bound given by 2. or 3. is enough to eliminate S without search; we use a heuristic to estimate
which option is more efficient.

21

• w(Ri) = w(R′i) and Ri has fewer pairs than R′i of subrows not in descending weight
order, or

• . . ., Ri and R′i have equally many pairs of subrows not in descending weight order, and
Ri <lex R′i where the entry set Σ ⊆ Mat{I ,O}(max ai , max bj) is ordered by <w lex.

The quotient-weightlex-minimal form of a quotient matrix is the <qu-minimal member of
its orbit under permutations of rows of equal block height, columns of equal block width,
subrows of the same row and subcolumns of the same column, and if Aᵀ = A, transposition
of the quotient matrix and its blocks.

Let Q be a quotient matrix in quotient-weightlex-minimal form for an abstract scaffold A.

Lemma 3.22.

1. Rows of Q of equal block height are in weightlex order.

2. Columns of Q of equal block width are in lex order.

3. Subrows of the same row of Q are in weightlex order.

4. Subcolumns of the same column of Q are in lex order.

Proof.

1. Consider rows Ri ,Rk of Q for i < k .

(a) If w(Ri) < w(Rk), then swapping the rows yields a row i of greater weight; a
contradiction.

(b) If w(Ri) = w(Rk) but Ri >lex Rk , then swapping the rows does not change the
weight of any row or subrow, but yields a row i lower in lex order; a contradiction.

2. If not, then let i be the first row in which the two columns of Q differ. Swapping the
columns does not change the weight of any row or subrow, and does not change any
rows above i , but yields a row i lower in lex order; a contradiction.

3. Consider subrows Ri ,Rk in the expansion of a row of Q for i < k .

(a) If w(Ri) < w(Rk), then swapping the subrows does not change the row weight,
but leaves fewer pairs of subrows not in descending weight order; a contradiction.

(b) Let j be the column in Q of the first block in which Ri ,Rk differ. If w(Ri) = w(Rk)
but Ri >lex Rk , then swapping the subrows does not change weight of the row or
any subrow, and leaves blocks before j unchanged, but yields a block j of equal
weight lower in lex order; a contradiction.

4. Consider subcolumns Cj ,Cl in the expansion of a column of Q for j < l . If Cj >lex Cl ,
let i be the row in Q of the first block in which Cj ,Cl differ. Swapping the subcolumns
does not change the weight of any row, subrow, and leaves blocks above i unchanged,
but yields a block i of equal weight lower in lex order; a contradiction.

22

Lemma 3.23. If subrows of the first row of Q have equal weight, then π, π′ ∈ {I ,O}ν are
in lex order, where πj , π

′
j indicate whether each subrow has an I entry in the block Q1,j .

Proof. If not, let j be the first column with πj = O and π′j = I . Swap these subrows, then
swap subcolumns of Q to revert any changes made to blocks before j in the first row, as in
the example below.

π = (I ,O , . . .) I · · ·
π′ = (I , I , . . .) I I

I
. . .

. . .
...

. . .
. . .

7→

I I · · ·
I

I
. . .

. . .
...

. . .
. . .

7→

I I · · ·
I

I
. . .

. . .
...

. . .
. . .

This does not change the weight of the first row or any of its subrows, and leaves blocks
before j in the first row unchanged, but yields a block Q1,j of equal weight lower in lex order;
a contradiction.

3.5 Quotient matrix algorithm

The algorithm for computing z (A) is a specific instance of the model in Section 2.1, using

• Constraints 3.24, 3.25, 3.26, 3.27, and 3.28,

• The bounding function 3.29, and

• The guess function Glex as in Definition 2.12.

The initial partial solution P has σ ∈ Pi ,j only if a(σ) 6 ai and b(σ) 6 bj . As before, the
procedures enforcing the constraints should delete possible entries from P as appropriate.

Constraint 3.24. If (i , j) is fresh then for each 2×2 minor including (i , j) with three con-
firmed entries, delete all incompatible σ ∈ Σ from the remaining entry, as in Theorem 3.13.

For rows, w and w are as in (2.4), and for subrows we use a similar definition.

Constraint 3.25. If Ri ,Ri+1 are consecutive rows with a fresh entry, and ai = ai+1, then
require w(Ri) > w(Ri+1). If this is an equality, then require Ri 6lex Ri+1.

Constraint 3.26. If Ri ,Ri+1 are consecutive subrows of a row with a fresh entry, then require
w(Ri) > w(Ri+1). If this is an equality, then require Ri 6lex Ri+1, and if also i = 1, also
require π 6lex π

′ as in Lemma 3.23.

Constraint 3.27. If Cj ,Cj+1 are consecutive columns with a fresh entry, and bj = bj+1,
then require Cj 6lex Cj+1.

Constraint 3.28. If Cj ,Cj+1 are consecutive subcolumns of the same column with a fresh
entry, then require Cj 6lex Cj+1.

23

Proof. 3.24 is similar to 2.13, and 3.25–3.28 follow from Lemma 3.22.

Bound 3.29. If P is a partial solution for an extremal quotient matrix Q, then

w(Q) 6 w(P) = min

{∑
a

wband(P |a),
∑
b

w stack(P |b)

}

where

1. wbox(P |ab) is the minimum of z (c, d | a, b) or an upper bound for it, (2.4), and
Bound 2.6 with W (m, n) = z (m, n | a, b),

2. wband(P |a) is the minimum of z (A|a) or an upper bound for it,
∑

b wbox(P |ab), and
Bound 2.9 on the rows, and

3. w stack(P |b) is the minimum of z (A|b) or an upper bound for it,
∑

a wbox(P |ab), and
Bound 2.14 on the subrows.

Proof. Follows directly from Proposition 3.19.

If A is a box (i.e. all blocks have the same dimensions) then the problem is hereditary, so we
can also use the upper bounds in Proposition 2.1, and impose Constraint 2.5.

If A ← [S for a candidate S in Theorem 3.4, then we can also use bounds for z (S) as in
Section 3.3, and the following constraints. If A is a band or a stack in Proposition 3.19, we
impose the applicable constraints to its rows or columns respectively.

Constraint 3.30. If Ri has a fresh entry and ai = q, require w(Ri) 6
∑q

j=1 nj . If this is an
equality and Ri is complete, then for the vector r of subrow weights of Ri , require r6lex n.

If Cj has a fresh entry and bj = p, require w(Cj) 6
∑p

i=1 mi .

Proof. As in Proposition 3.20. By Lemma 3.22.3 we do not need to sort r. We do not require
c6lex m for the (sorted) subcolumn weights, as columns of P are usually incomplete.

Constraint 3.31. Suppose Pi ,j = σ is fresh and σk ,l = I . Let Rk and Cl be the corresponding
subrow and subcolumn of Q, and let ε, ε′ ∈ {0, 1} indicate whether e(S) has I entries in the
corresponding row and column respectively.13 We require

1. w(Rk) + ε > r and w(Cl) + ε′ > c, where r , c are minimum row and column weights
respectively for e(S,Q) as in Constraint 2.5,

2. If nl = p then w(Cl) 6 q, and

3. w(Rk) + ε 6 p + 1, and if this is an equality, w(Cl) + ε′ 6 q + 1.

13ε may vary on the band a = 1, and the bound is stricter when ε = 1. The subrow weights excluding ε are
in descending order, so we should impose ε = 1 on the last mO subrows, not the first. This occurs naturally
when we reverse a and b anyway.

24

4. If n = m then require w(Cl) + ε′ 6 p + 1.

Proof. 1. is trivial.

For 2. and 3., if there is an extremal rectangle-free A ∈ Mat{I ,O}(m, n) with a row of weight
> p +1, or a column of weight > q +1 intersecting a row of weight p +1, then after permuting
rows and columns it has a scaffold preceding S in scaffold order.

For 4., permuting rows and columns of Aᵀ would yield a matrix with a scaffold preceding S
in scaffold order.

We also use Bound 2.14 on the expansion, and apply Proposition 3.20 in Bound 3.29.

The upper bounds in Proposition 3.19 still tend to overestimate the potential weight of
quotient matrices with many small blocks, as individual bands and stacks can typically afford
greater box weights than the full quotient matrix can. Most such scaffolds are fruitless. To
alleviate this, we reverse a and b to put blocks of least height and width at the upper left
of Q , where Glex tries them first so that the bounding functions give sharper bounds. The
results here do not depend on this ordering, so long as rows of equal ai and columns of equal
bj respectively are consecutive.

3.6 Scaffold algorithm

In this section we describe the specific algorithm for the case s = t = 2, based on Theorem 3.4.
The only parameters are m and n.

1. Get a lower bound L and an upper bound U using the results in Section 1.2. If an
exact value is given directly, or L = U , then terminate. Otherwise, increment L by 1.14

2. Generate the set of candidate m×n scaffolds satisfying the constraints of Proposi-
tion 3.16, and for which the least upper bound U ′ given by Propositions 3.17 and
3.19.1 has U ′ > L. If m 6= n, similarly generate the set of n×m scaffolds.

3. If either set of candidate scaffolds is empty, terminate.

4. Choose a candidate scaffold S, and delete it from the set it was taken from.

5. Compute upper bounds as in Propositions 3.19.2 and 3.19.3, and update U ′ accordingly.
If now U ′ < L, reject S and repeat from 3.

6. Search for an extremal quotient matrix Q for S using the algorithm in Section 3.5, with
lower bound L and upper bound min{U ,U ′}. If no solution with w(S) + w(Q) > L is
found, repeat from 3.

7. Output e(S,Q).

14As before, there is no disadvantage in doing this; if no solution is found, the result will be the original
L, and the lower bounds used are constructive.

25

8. Let L = w(S) + w(Q) + 1, and delete any scaffolds the set(s) of candidates according
to the new lower bound L.

9. If L 6 U , repeat from 3.

In 4. we use two heuristics to choose S: if m 6= n we use an estimate of running time to choose
from the set of candidate scaffolds which can be exhausted faster, and we choose a scaffold
minimising VAR(q ,m1, . . . ,mp) + VAR(p, n1, . . . , nq), as we expect an extremal solution to
have approximately uniform row and column weight distributions.

If n 6= m we can impose one further constraint in the algorithm of Section 3.5.

Constraint 3.32. Let c be the greatest p + 1 of a scaffold in the set of candidates from
which S was not taken. Suppose Pi ,j = σ is fresh and σk ,l = I . Let Cl be the corresponding
subcolumn of Q, and ε′ ∈ {0, 1} indicate whether e(S) has an I entry in the corresponding
column. Then we require w(Cl) + ε′ 6 c.

Proof. Let A be an m×n rectangle-free matrix with a column of weight > c. After permuting
rows and columns of Aᵀ we find a matrix of equal weight with a scaffold S ′ such that p ′ is
greater than of any candidate in the other set. S ′ has already been eliminated as a candidate,
and precedes all remaining n×m candidates in scaffold order, so A is not extremal.

4 Computational results and analysis

In this section we present our results, analyse the efficiency of the algorithms described in
Sections 2.4 and 3.6, and compare with results of other researchers.

4.1 New Zarankiewicz numbers

As the case s = t = 2 is of most interest, we report the following new values, all of which
were found by the scaffold algorithm on single-processor computers. In total we found 213
new values for s , t 6 4 using the two algorithms. We give full tables in Appendix A.

z (m, n)

n
m 15 16 17 18 19 20 21 22 23

21 − − 85 − − − − − =
22 − 83 87 91 96 − − 108 =
23 − 85 89 93 98 103 108 110 115
24 82 87 96 100 105 118

The most comprehensive table of values we found for z (m, n) was published by Damásdi et
al. in [DHS13]. Tables for z (m, n; s , t) with s , t 6 4 were published by Guy in [Guy68]
and [Guy69]. To our knowledge, these tables include all Zarankiewicz numbers for s , t 6 4

26

reported prior to this paper.15 We report a value as new if it is not found in these tables, unless
the value would likely have been reported were it within the table’s range for m, n. We also
found 12 previously unreported errors in Guy’s tables, which are corrected in Appendix A.

To illustrate the number and nature of new values found, for each s , t we plot the set of m, n
for which z (m, n; s , t) was previously reported, and overlay the boundary of the set of values
we computed. Unshaded areas within this boundary represent new values.

z (m, n) z (m, n; 2, 3) z (m, n; 2, 4)

m

n

10 20 30

10

20

30

m

n

10 20

10

20

m

n

10 20

10

20

z (m, n; 3, 3) z (m, n; 3, 4) z (m, n; 4, 4)

m

n

10 20

10

20

m

n

10 20

10

20

m

n

10 20

10

20

Figure 4.1: Computed values vs. those reported prior to this paper

Although Figure 4.1 gives an indication of our algorithms’ feasible regions, we did not allocate
CPU time across the possible parameters m, n, s , t in a systematic way. Also, minor variations
had an enormous effect on feasibility; in one startling example, z (12, 11; 2, 3) did not finish
within one day, yet its transpose z (11, 12; 3, 2) took under one second. It is therefore very
likely that more values could be found within reasonable running times using essentially the
same algorithms.

4.2 Efficiency

We measured the running time of each algorithm in the case s = t = 2 on a single 1.9 GHz
processor. Due to the extensive use of recursive bounds, the running time to compute z (m, n)
depends on whether the cached values for smaller m, n are exact, or are themselves bounds.

15With the exception of z (15, 15) = 61, which was incorrect in Guy’s tables, but not corrected in Damásdi
et al.’s. The correct value appears in [DDR13].

27

2,2 5,5 7,7 8,8 9,9 10,10 11,11 12,12 13,13 14,14 15,15 16,16 17,17 18,18 19,19 20,20 21,21 22,22 23,23
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

m,n

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Scaffold algorithm
General algorithm

Figure 4.2: Running time to compute z (m, n)

We give running times using exact values for this purpose, so it is appropriate to also show
the cumulative running time required to compute z (m ′, n ′) for all m ′ 6 m and n ′ 6 n.

In a few individual cases where the lower bound L equals the upper bound U , no search is
required, and hence the running time is negligible. In general the sharpness of L has a large
effect on the scaffold algorithm’s efficiency, due to the number of candidate scaffolds, and the
likelihood of searching scaffolds with no good solution. The effect on the general algorithm
is mitigated by the likelihood of finding a good solution quickly. It would be possible to
improve L by trying to insert additional rows and/or columns into solutions for smaller m, n.

4.3 Comparison with other computational approaches

Steinbach & Posthoff described an algorithm for z (m, n) which recursively generates all
rectangle-free matrices of an increasing weight. Their algorithm uses a ternary vector data
structure to distinguish confirmed and unconfirmed entries, but does not use upper bounds
or symmetry reduction. [SP12] Later they extended their algorithm with some symmetry
reduction techniques, and were able to compute z (10, 10) in ∼7 hours on a single 2.93 GHz
processor. [SP14]

Werner described a backtracking algorithm for z (m, n) which iteratively increments complete
rows in a way which avoids rectangles. An upper bound resembling Bound 2.6 is used
to reject partial solutions, and symmetry reduction is implemented by generating rows in
lexicographic order. This algorithm computed z (10, 10) in ∼18 minutes, and z (11, 11) in
∼172 hours, on a single 2.67 GHz processor; a heuristic variant successfully found z (12, 12)

28

2,2 5,5 7,7 8,8 9,9 10,10 11,11 12,12 13,13 14,14 15,15 16,16 17,17 18,18 19,19 20,20 21,21 22,22 23,23
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

m,n

cu
m

ul
at

iv
e

ru
nn

in
g

tim
e

(s
ec

on
ds

)

General algorithm
Scaffold algorithm

Figure 4.3: Cumulative running time to compute z (m, n)

in ∼12.5 hours. [Wer12]

Dybizbański et al. used the software package nauty [MP14] to compute z (n, n) up to n = 16,
but did not give details of this approach other than that it was infeasible for n > 16. [DDR13]

In comparison, on a single 1.9 GHz processor our general algorithm computes z (m, n) for
every m, n 6 16 in ∼1.35 hours, or every m, n 6 19 in ∼3.2 hours; the scaffold algorithm
achieves these results in ∼2.5 seconds and ∼42.5 seconds respectively. Therefore, both of our
algorithms improve on previous work in the case s = t = 2 by several orders of magnitude.

We did not find other computational approaches for general s , t .

5 Observations and questions

The generalisation of the Zarankiewicz problem to matrices with entries in [a] 7� [b] opens up
further connections with other related combinatorial problems. We demonstrate the depth
of the “block Zarankiewicz problem” with some examples of such connections.

Definition 5.1. For an entry set Σ ⊆ [a] 7� [b],

1. We say (m, n; s , t) is Σ-completable if there is a matrix in MatΣ(m, n) with an (s , t)-
rectangle-free expansion.

2. In this case we define z (m, n; s , t | Σ) as the maximum weight of an (s , t)-rectangle-free
matrix in MatΣ(m, n).

29

Trivially, if O ∈ Σ then every (m, n; s , t) is Σ-completable. As before, for brevity we omit
s , t in the case s = t = 2. The following definition will also be useful.

Definition 5.2. For T ⊆ N2, we define z (m, n; T) as the maximum weight of a matrix in
Mat{I ,O}(m, n) which is (s , t)-rectangle-free for all (s , t) ∈ T .

Values of z (m, n; T) can be computed with an algorithm similar to that in Section 2.4, using
instances of the relevant constraints and bounds for each (s , t) ∈ T .

5.1 Rectangle-free coloring

The bipartite Ramsey number bk(s) is the minimum n ∈ N such that every k -edge-coloring
of the complete bipartite graph Kn,n has a monochromatic Ks,s subgraph. [DDR13]

This problem of Ramsey theory is equivalent to a multicolor version of the Zarankiewicz prob-
lem, by identifying k -edge-colourings of Kn,n as matrices in Mat[k](n, n). An edge-coloring
has a monochromatic Ks,s if and only if the corresponding matrix has a monochromatic s×s
minor. The multicolor Zarankiewicz problem has been studied e.g. in [DDR13, FGGP10,
GHO00]. We say (m, n; s , t) is k -colorable if there is a matrix in Mat[k](m, n) with no
monochromatic s×t minor.

Identifying [k] with ∆k = {δ1, . . . , δk} where each δi = {(i , i)}, we see that a matrix in Mat[k]

has a monochromatic s×t minor if and only if the corresponding matrix in Mat∆k
has an

(s , t)-rectangle. It follows that (m, n; s , t) is k -colorable if and only if it is ∆k -completable.

In the case s = t = 2, we use this notation to restate and generalise some definitions given
by Fenner, Gasarch, Glover & Purewal in [FGGP10].

Definition 5.3.

1. A half-mono rectangle is a 2×2 minor
(
α β
γ δ

)
with α = γ and β = δ.

2. (m, n) is strongly-k-colorable if there is a matrix in Mat[k](m, n) with no half-mono
rectangle.

Identifying [k] with Γk = {γ1, . . . , γk} where γi = {(1, i)}, we see that a matrix in Mat[k] has
a half-mono rectangle if and only if the corresponding matrix in MatΓk

has a rectangle. It
follows that (m, n) is strongly-k -colorable if and only if it is Γk -completable.

The obstruction set OBSk is the set of pairs16 (m, n) which are not k -colorable, but for which
(m ′, n ′) is k -colorable whenever [m ′] × [n ′] is a proper subset of [m] × [n]. It is natural to
extend this definition to other entry sets.

Definition 5.4. OBS(Σ) is the set of pairs (m, n) which are not Σ-completable, but for which
(m ′, n ′) is Σ-completable whenever [m ′]× [n ′] is a proper subset of [m]× [n].

16Fenner et al.’s obstruction sets actually contain the sets [m]× [n] rather than the pairs (m,n).

30

Equivalently, (m ′, n ′) is Σ-completable if and only if [m ′] × [n ′] is not a superset of any
[m]× [n] with (m, n) ∈ OBS(Σ).

We have seen that OBSk = OBS(∆k). We also note that when (m, n) is ∆k -completable, we
have z

(
m, n

∣∣∆k ∪ {O}
)

= z
(
m, n; OBS(∆k)

)
= mn. We therefore ask when this is true for

other (m, n).

Question 5.5. For which m, n, k is z
(
m, n

∣∣∆k ∪ {O}
)

= z
(
m, n; OBS(∆k)

)
?

One direction is trivial: given an extremal Q ∈ Mat∆k∪{O}(m, n), the indices of the non-O
entries of Q must form an OBS(∆k)-rectangle-free subset of [m]× [n]. The question is when
this construction can be performed in reverse given an extremal A ∈ Mat{I ,O}(m, n).

Fenner et al. note that if (m, n) is k -colorable then k z (m, n) > mn. A similar argument
shows that k z (m, n) > z

(
m, n

∣∣ ∆k ∪ {O}
)
, and hence we give an example to show that

Question 5.5 is nontrivial.

Example 5.6. OBS2 = { (3, 7), (5, 5), (7, 3) } as shown in [FGGP10], so neither (7, 4) nor
(7, 5) are 2-colorable.

1. z (7, 4; OBS2) = z
(
7, 4

∣∣∆2 ∪ {O}
)

= 26, but

2. z (7, 5; OBS2) = 32 and z (7, 5) = 15.

When (m, n) is k -colorable, a related question is whether a coloring is possible for which the
entries of some color form an extremal m×n rectangle-free matrix. In general this cannot be
done if the extremal rectangle-free matrix is given, as e.g. (5, 3) is 2-colorable but there is an
extremal 5×3 rectangle-free matrix with a non-rectangle-free complement.

Question 5.5 allows us to ask this question about other (m, n).

Question 5.7. For which m, n, k is there an extremal rectangle-free matrix in Mat∆k∪{O}(m, n)
for which the entries of some color form an extremal rectangle-free matrix in Mat{I ,O}(m, n)?

5.2 Symmetric groups

Theorem 5.8. For k > 2, we have z (k , k | k , k) 6 k 3, with equality if and only if there is a
finite projective plane of order k.

Proof. Trivially, k 3 is an upper bound, e.g. by (2.4), and is achieved only by a matrix Q
with every w(Qi ,j) = k . Such a Q is precisely the quotient matrix for the scaffold with
m = n = (k , . . . , k) and mO = nO = 0 which gives a finite projective plane incidence matrix
in Paige–Wexler canonical form. [PW53]

In general, z (m, n | k , k) = mnk if and only if there is a solution in which every block has
weight k . Considering the blocks as partial functions, w(σ) = k if and only if σ is a total
function. In this case we can consider matrices with entries in the symmetric group Sk ,
and Theorem 5.8 can be restated as: (k , k) is Sk -completable if and only if there is a finite
projective plane of order k .

31

Theorem 5.9. OBS(Sk) ⊇ { (2, k + 1), (k + 1, 2) }, with equality if and only if there is a
finite projective plane of order k.

Proof. By the pigeonhole principle on the positions of the I entries in the first subrow of
each block, (2, k + 1) and (k + 1, 2) are not Sk -completable for any k . On the other hand,
(2, k) and (k , 2) are Sk -completable for all k , as the first row can be given by the identity
element Ik and the second given by the monochrome sets of a Latin square of order k .

If (k , k) is Sk -completable then there is a finite projective plane of order k . Otherwise there
is some (m, n) ∈ OBS(Sk) with m 6 k and n 6 k .

Matrices in MatSk
in lex-minimal form have only the identity element Ik in the first row and

column. By Theorem 3.13 every other block must be a derangement, and for blocks σ, τ in
another row or column, στ−1 must be a derangement.

The h− 1 non-constant rows of a matrix in MatSk
(h, k) in lex-minimal form correspond with

Latin squares. Although it is well known that a finite projective plane is equivalent to a
set of k − 1 mutually orthogonal Latin squares (MOLS) of order k , the rows of an incidence
matrix in Paige–Wexler canonical form do not themselves yield such a set. However, Paige &
Wexler do describe a construction of a complete set of MOLS from the blocks of the incidence
matrix.

Example 5.10. OBS(S6) = { (2, 7), (3, 6), (6, 3), (7, 2) }.

Proof. As in Theorem 5.9, (2, 6) is S6-completable. Using the quotient matrix algorithm with
Σ = S6, we found that (3, 6) is not S6-completable, and that (5, 5) is S6-completable.

This may be related to the non-existence of a set of 2 MOLS of order 6. For an overview of
MOLS, see e.g. [ABCD96]. The next case not covered by Theorem 5.9 is k = 10, for which
the O

(
|Σ|2

)
memory required to cache the compatibility relation was too large.

Question 5.11. Is (h, k) is Sk -completable if and only if there is a set of h − 1 mutually
orthogonal Latin squares of order k?

The following question is a direct analogue of Question 5.5.

Question 5.12. For which m, n, k is z
(
m, n

∣∣ Sk ∪ {O}
)

= k z
(
m, n; OBS(Sk)

)
?

As before, the equality is trivial when (m, n) is Sk -completable, and given an extremal
rectangle-free Q ∈ MatSk∪{O}(m, n) we can we can take A ∈ Mat{I ,O}(m, n) as the set
of indices for which w(Qi ,j) = k . Again, the question of when the reverse construction is
possible is non-trivial.

32

Example 5.13. By Theorem 5.9 neither (10, 5) nor (10, 6) are S2-completable.

1. z (10, 5 | S2) = 50 and z
(
10, 5; OBS(S2)

)
= 25, but

2. z (10, 6 | S2) = 58 and z
(
10, 6; OBS(S2)

)
= 30.

Empirical results suggest that the lower bound z (m, n | k , k) > z
(
m, n

∣∣ Sk ∪ {O}
)

is quite
sharp and often exact; due to the relative size of the entry sets, the latter is far more efficient
to compute.

5.3 Search for finite projective planes

We consider quotient matrices Q such that the expansion e(S,Q) is the incidence matrix
of a finite projective plane of order k , where the scaffold S has m = n = (k , . . . , k) and
mO = nO = 0.

For k = 2, 3, 4, 5, the Q we found have only k distinct entries. This may be because the
compatibility relation in Theorem 3.13 is easiest to satisfy over the whole quotient matrix if an
entry set is chosen to maximise the proportion of possible 2×2 minors which are compatible,
and this is done by minimising its size. Montaron reported in [Mon85] that k = 7, 8, 9, 11
also have this property.

Question 5.14. If k is the order of a finite projective plane, is there a rectangle-free matrix
in MatSk

(k , k) with at most k distinct entries?

Whether or not the property can be assumed to hold, we can look for entry sets Σ ⊂ Sk with
a high proportion of compatible 2×2 minors. Given a good lower bound on this proportion,
most such sets should be eliminable without searching for quotient matrices.

We also ask the analogue of Question 5.7.

Question 5.15. For which m, n,Σ is there an extremal rectangle-free matrix in MatΣ(m, n)
for which the entries of some (non-O) symbol form an extremal rectangle-free matrix in
Mat{I ,O}(m, n)?

For k , k , Sk this would be a finite projective plane, as above.

Since Sk acts on Q by permuting subrows, without loss of generality it is the Ik entries which
form an extremal rectangle-free k×k matrix. By Reiman’s theorem (Theorem 1.9, [Rei58])
the expansion e(S,Q) is itself an extremal rectangle-free n×n matrix, where n = k 2 + k + 1.
We call such a k sub-similar.

Question 5.16. Which orders k of a finite projective plane are sub-similar?

If it can be shown that k is sub-similar, we can search for finite projective planes of order k
from an initial configuration of the quotient matrix with z (k , k) confirmed Ik entries, rather
than 2k − 1 in the first row and column as in Paige–Wexler canonical form. We verified that

33

k = 2, 3, 4, 5 are sub-similar; k = 6 is not, as there is no finite projective plane of order 6. We
were able to verify that k = 7 is not sub-similar; see Appendix B for details. It was infeasible
to check k > 8 using the techniques described in this paper.

Due to the small number of non-isomorphic extremal rectangle-free matrices under row,
column and transpose symmetries — e.g. the algorithm in Section 2.4, modified to search for
all solutions, found 8 distinct extremal 12×12 rectangle-free matrices, all isomorphic — the
cost of repeating the search for each initial configuration, if necessary, should be outweighed
by the benefit of a shallower search tree. The entries in such a solution must still be Ik or
derangements,17 and the search space can still be reduced by symmetry, as the action of Sk

by conjugation of entries preserves the initial configuration and the rectangle-free property.

We do not propose that algorithms similar to those presented in this paper would be feasible
for k = 12, but the idea may be applicable in other approaches.

References

[ABCD96] R. Julian R. Abel, Andres E. Brouwer, Charles J. Colbourn, and Jeffrey H. Dinitz.
Mutually orthogonal Latin squares (MOLS). In The CRC handbook of combina-
torial designs, pages 160–193. CRC Press, Boca Raton, 1996.

[Cam95] Peter J. Cameron. Finite geometries. In Handbook of Combinatorics, pages 647–
691. Elsevier, 1995.

[Čul56] K. Čulik. Teilweise Lösung eines verallgemeinerten problems von K. Zarankiewicz.
In Annales Polonici Mathematici, volume 1, pages 165–168, 1956.

[DDR13] Janusz Dybizbański, Tomasz Dzido, and Stanis law Radziszowski. On some
Zarankiewicz numbers and bipartite Ramsey numbers for quadrilateral. arXiv
preprint arXiv:1303.5475, 2013.

[DHS13] Gábor Damásdi, Tamás Héger, and Tamás Szőnyi. The Zarankiewicz problem,
cages, and geometries. Annales Universitatis Scientiarum Budapestinensis de
Rolando Eötvös Nominatae Sectio Mathematica, 56(1):3–37, 2013.

[DM96] John D. Dixon and Brian Mortimer. Permutation groups, volume 163. Springer
Science & Business Media, 1996.

[FFH+02] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin
Pearson, and Toby Walsh. Breaking row and column symmetries in matrix mod-
els. In Principles and Practice of Constraint Programming-CP 2002, pages 462–
477. Springer, 2002.

[FGGP10] Stephen Fenner, William Gasarch, Charles Glover, and Semmy Purewal. Rect-
angle free coloring of grids. arXiv preprint arXiv:1005.3750, 2010.

17Every entry σ 6= Ik must be a corner of some
(
Ik Ik
Ik σ

)
minor, otherwise Ik could be inserted there in the

initial configuration without creating a rectangle.

34

[FS13] Zoltán Füredi and Miklós Simonovits. The history of degenerate (bipartite) ex-
tremal graph problems. In Erdős Centennial, pages 169–264. Springer, 2013.

[GHO00] Wayne Goddard, Michael A. Henning, and Ortrud R. Oellermann. Bipartite
Ramsey numbers and Zarankiewicz numbers. Discrete Mathematics, 219(1):85–
95, 2000.

[Guy68] Richard K. Guy. A problem of Zarankiewicz. In Theory of Graphs, pages 119–150.
Akadémai Kiadó, Budapest, 1968.

[Guy69] Richard K. Guy. A many-facetted problem of Zarankiewicz. In The Many Facets
of Graph Theory, pages 129–148. Springer, 1969.

[KST54] T. Kóvari, V. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloquium
Mathematicae, 3(1):50–57, 1954.

[Lip96] Stephen Lipscomb. Symmetric inverse semigroups, volume 46 of Mathematical
Surveys and Monographs. American Mathematical Society, 1996.

[Mon85] Bernard Montaron. On incidence matrices of finite projective planes. Discrete
Mathematics, 56(2):227–237, 1985.

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal
of Symbolic Computation, 60:94–112, 2014.

[PW53] Lowell J. Paige and Charles Wexler. A canonical form for incidence matrices of
finite projective planes and their associated Latin squares. Portugaliae mathe-
matica, 12(3):105–112, 1953.

[Rei58] Istvan Reiman. Über ein problem von K. Zarankiewicz. Acta Mathematica Hun-
garica, 9(3-4):269–273, 1958.

[Rom75] Steven Roman. A problem of Zarankiewicz. Journal of Combinatorial Theory,
Series A, 18(2):187–198, 1975.

[SP12] Bernd Steinbach and Christian Posthoff. Search space restriction for maximal
rectangle-free grids. In 10th International Workshop on Boolean Problems, 2012.

[SP14] Bernd Steinbach and Christian Posthoff. The slot principle. In Recent Progress
in the Boolean Domain. Cambridge Scholars Publisher, 2014.

[Spi92] J. Michael Spivey. The Z notation: a reference manual. International Series in
Computer Science. Prentice-Hall, New York, NY, 1992.

[Wer12] Matthias Werner. An algorithmic approach for the Zarankiewicz problem. In
10th International Workshop on Boolean Problems, 2012.

[Zar51] Kazimierz Zarankiewicz. Problem p 101. In Colloq. Math, volume 2, page 5, 1951.

35

A Appendix: Tables

Tables for z (m, n; s , t) have been previously published by Guy in [Guy68] and [Guy69], and
by Damásdi et al. in [DHS13] for the case s = t = 2. Due to the number of new exact values
found by computer search (in bold), and errors in Guy’s tables (marked ∗), new tables may
be of benefit. Some values reported by Damásdi et al. (in italics) were not feasible to confirm
by computer search. We were able to check all of Guy’s values. Some values are previously
unreported, but likely only because they lie outside the range of earlier tables; these are not
labelled as new.

A.1 Exact values of z (m, n; 2, 2)

n
m 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4 9
5 10 12
6 12 14 16
7 13 15 18 21
8 14 17 19 22 24
9 15 18 21 24 26 29
10 16 20 22 25 28 31 34
11 17 21 24 27 30 33 36 39
12 18 22 25 28 32 36 39 42 45
13 19 23 27 30 33 37 40 44 48 52
14 20 24 28 31 35 39 42 45 49 53 56
15 21 25 30 33 36 40 44 47 51 55 58 61∗

16 22 26 31 34 38 42 46 50 53 57 60 64∗ 67
17 23 27 32 36 39 43 47 51 55 59 63 67∗ 70 74
18 24 28 33 37 41 45 49 53 57 61 65 69 73 77 81
19 25 29 34 39 42 46 51 55 60 64 68 72 76 80 84 88
20 26 30 35 40 44 48 52 57 61 66 70 75 80 84 88 92 96
21 27 31 36 42 45 49 54 59 63 67 72 77 81 85 90 95 100 105
22 28 32 37 43 47 51 55 60 65 69 73 78 83 87 91 96 101 106 108
23 29 33 38 44 48 52 57 62 66 71 75 80 85 89 93 98 103 108 110 115
24 30 34 39 45 50 54 58 63 68 73 78∗ 82 87 96 100 105 118
25 31 35 40 46 51 55 60 65 70 75 80∗ 85 90
26 32 36 41 47 53 57 61 66 72 78 82∗ 86 91 96 101 106 111 116
27 33 37 42 48 54 58 63 68 73 79 84∗ 88 93 98 103 108 113 118 123 128
28 34 38 43 49 56 60 64 69 75 81 86∗ 96 101 106 111 116 121 126 131
29 35 39 44 50 57 61 66 71 76 82 114 120 125 130 135
30 36 40 45 51 58 63 67 72 78 84 132 138
31 37 41 46 52 59 64 69 74 79 85
32 38 42 47 53 60 66 70 75 81 87
33 39 43 48 54 61 67 72 77 82 88
34 40 44 49 55 62 69 73 78 84
35 41 45 50 56 63 70 75 80 85
36 42 46 51 57 64 72 76 81 87
37 43 47 52 58 65 73 78 83 88
38 44 48 53 59 66 74 79 84 90

N.b. the unbolded values marked ∗ were corrected in [DHS13], except for z (15, 15) = 61 as noted by Héger

after publication, and reported correctly by Dybizbański et al. in [DDR13].

36

A.2 Exact values of z (m, n; 2, 3)

n
m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4 9 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
5 10 13 16 19 22 24 27 30 32 34 36 38 40 42 44 46 48 50 52 54 56
6 12 15 18 21 24 27 30 33 36 38 41 44 46 49 52 54 57 60 62 64 66
7 13 16 20 24 28 31 34 37 40 43 46 49 51 54 57 59 62 65 67 70 73
8 14 18 22 25 29 33 36 40 44 48 52 56 58 61 64 66 69 72 74 77
9 15 19 23 27 31 35 39 42 46 50 54 58 61 64 68 72 75 78 81 84
10 16 21 25 30 34 38 42 46 50 53 56 60 64 68 72 76 79 83 86 90
11 17 22 26 31 36 40 45 50 55 58 61 65 68 72 76 79 83 87 91 95
12 18 24 28 33 37∗ 42 46 51 56 60 64 68 72 76 80 84 88 92 96
13 19 25 29 34 39 44 49 54 58 63 67
14 20 26 31 36 42 46 51 56 61 66 71
15 21 27 32 37 43 48 54 60 65 70 75
16 22 28 34 39 45 50 56 61 66 72
17 23 29 35 40 46 52 57 63 69 74
18 24 30 37 42 48 54 60∗ 66 71 77
19 25 31 38 43 49 56 62∗ 68∗ 74 79
20 26 32 40 45 51 58 64 70 76 82
21 27 33 41 46 52 59 66 72
22 28 34 42 48 54 61 68 74
23 29 35 43 49 55 62 69 76
24 30 36 44 51 57 64 72 78
25 31 37 45 52 58 65 73 80
26 32 38 46 54 60 67 75 82
27 33 39 47 55 61 68 76
28 34 40 48 57 63 70 78

N.b. z (7, 12; 2, 3) = 37 was reported correctly in [Guy68] but incorrectly in [Guy69].

A.3 Exact values of z (m, n; 2, 4)

n
m 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
5 12 16 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74
6 13 17 21 25 29 33 37 41 45 48 52 56 60 63 66 69 72 75 78 81 84
7 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95
8 16 21 26 30 35 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100
9 18 22 27 32 37 42 47 52 57 61 66 71 75 80
10 19 24 30 35 40 45 50 55 60 65 70 75 80 85
11 20 25 31 37 42 48 54 60 66 71 76 81 86 91
12 21 27 33 39 44 50 56 61 67 73 78 84 90
13 22 28 34 40 46 52 58 64 70 76 81 87 93
14 23 30 36 42 49 56 62 68 74 80 86 92 98
15 24 31 37 44 51 57 64 71 77 84 91 98 105
16 25 33 39 46 53 59 66 73 79 86 93
17 26 34 40 48 55 62 69 75 82 89 96
18 27 36 42 49 57 64 72 78 85 92 99
19 28 37 43 51 58 66 73 81 88
20 29 38 45 52 60 68 75 83
21 30 39 46 54 63 70
22 31 40 48 55 64 72
23 32 41 49 57 66 74
24 33 42 51 58 67 76
25 34 43 52 60 69

37

A.4 Exact values of z (m, n; 3, 3)

n
m 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
4 13 16 18 21 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
5 20 22 25 28 30 33 36 38 41 44 46 49 52 54 57 60 62 64 66 68
6 26 29 32 36 39 42 45 48 50 53 56 58 61 64 66 69 72 74 77
7 33 37 40 44 47 50 53 56 60 63 66 69 72 75 78 81 84 87
8 42 45 50 53 57 60 64 67 70 74
9 49 54 59 64 67
10 60 64 68
11 69 74
12 80

A.5 Exact values of z (m, n; 3, 4)

n
m 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
5 17 21 25 28 32 36 40 43 46 49 52 55 58 61 64 67 70 73 76 79
6 20 25 30 33 37 41 45 48 52 56 60 63 67 71 75 78 82 86 90 93
7 22 27 32 37 42 46 51 55 60 64 68 72 76 80 84 88 92 96 100 103
8 25 30 35 40 45 50 55 60 65 70 75∗ 79 83∗ 88∗ 92∗ 97∗

9 28 33 39 44 50 56 61 66 72 77 82 86 91 96 101 106
10 30 36 42 48 54 60 66 72 78 83 89 94 100 105
11 33 39 46 52 59 66
12 36 42 50 56 64 72
13 38 44 52 59 67 75
14 40 47 56 63 70 78
15 42 50 60 66 74
16 44 52 62 70
17 46 55 65 73
18 48 58 68 77
19 50 60 70
20 52 63 73
21 54 66 76
22 56 68 78

A.6 Exact values of z (m, n; 4, 4)

n
m 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5 22 26 30 33 37 41 45 48 52 56 60 63 66 69 72 75 78 81 84 87
6 31 36 39 43 47 51 55 59 63 67 71 75 78 82 86 90 93 97 101
7 42 45 49 54 58 63 68 72 77 82 87 90 95 100 105 108 112 116
8 51 55 60 65 70 75 80 85 90 95 99 104
9 61 67 72 78 84 88 94
10 74 79 86 93 97
11 86 93

38

B Appendix: k = 7 is not sub-similar

We searched for quotient matrices for a finite projective plane of order 7 from an initial
configuration containing z (7, 7) = 21 blocks I7. By Reiman’s theorem (Theorem 1.9, [Rei58])
the I7 blocks in this initial configuration must themselves form the incidence matrix of the
unique finite projective plane of order 2, the Fano plane.

This would have been infeasible without the following observation specific to the case k = 7.

Lemma B.1. By row, column and transpose symmetries, the indices of any unconfirmed
entry in the initial configuration can be mapped to any other, while preserving the initial
configuration.

Proof. The automorphism group of the Fano plane acts transitively on antiflags. [DM96, p. 305]

Therefore if the initial configuration plus one entry σ ∈ S7 leads to no solutions, σ can be
eliminated as a possibility in all entries. As the action of S7 on the quotient matrix by
conjugation of entries preserves the initial configuration and the rectangle-free property, if
the initial configuration plus one entry σ leads to no solutions, conjugates of σ can similarly
be eliminated everywhere.

As σ must be a derangement, it was therefore only necessary to perform four searches for an
initial σ with cycle types (2, 2, 3), (2, 5), (3, 4) and (7) respectively. If no solution is found,
entries of this cycle type may be deleted from Σ in later searches.

These reductions in the search space made the search feasible. We used an instance of the
abstract algorithm model in Section 2.1 with Constraint 3.24, and a guess function which
chooses an unconfirmed entry with the fewest possible symbols.

We found no solution in any of the four cases. Therefore, there is no quotient matrix for
a finite projective plane of order 7 with I7 entries forming an extremal 7×7 rectangle-free
matrix, and so k = 7 is not sub-similar.

39

