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Abstract

These notes are adapted from my notes taken from Part IA of the
Mathematical Tripos at the University of Cambridge in 2006-2007:

• Numbers and Sets, lectured by Prof. Imre Leader.

• Algebra and Geometry, “Groups and Geometry”, lectured by
Prof. Thomas Körner.

The two modules are consolidated in this text as each contain proofs
which depend on results from the other. Readers of Mathematics at
Cambridge should note that neither module is covered exhaustively,
but the missing parts from each can be found in my notes on Sets,
Logic, Relations, and Functions and IA Analysis I, and IA Vectors
and Matrices respectively.

Z notation is used in many places; see my notes on Sets, Logic,
Relations, and Functions for definitions of unfamiliar symbols and
words.
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1 Sets

1.1 Sets of Numbers

The set N = {0, 1, 2, . . .} of natural numbers is defined by three important
properties:

1. There is a “first” natural number 0.1

2. Every natural number n has a “next” number n + 1.

3. Every non-empty subset of N has a minimum element.

The set Z = {. . .−2,−1, 0, 1, 2, . . .} of integers is defined by introducing
additive inverses −n for each natural number n.

Z is a ring, meaning we can add, subtract and multiply according to the
usual rules.

The set Q of rational numbers is defined by introducing multiplicative
inverses 1

n
for each non-zero integer n.

The set R of real numbers is defined so that every non-empty bounded-
above subset S ⊂ R has a supremum or least upper bound sup S ; i.e. every
upper bound m of S must have m > sup S .

The set C of complex numbers is defined by introducing i, the imagi-
nary unit, which satisfies i2 = −1.

Q, R and C are fields, meaning we can add, subtract and multiply and
divide according to the usual rules.

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

(See the Appendix for formal definitions.)

1In some texts, the first natural number is 1. We will write N+ = N\{0} = {1, 2, 3, . . .}.
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1.2 Induction

Suppose P(n : N) is a predicate for which P(0) is true. Suppose also that,
for any n, the truth of P(n) implies the truth of P(n + 1). In this case, we
can conclude that P(n) is true for all natural numbers n. This principle is
known as induction.

Theorem 1.2.1 (Induction2).(
P(0) ∧

(
∀ n : N • P(n)⇒ P(n + 1)

))
⇒
(
∀ n : N • P(n)

)
Proof. Suppose ∃m : N • ¬P(m). Then let m = min{ n : N | ¬P(n) }. P(0)
is true by assumption, so m > 1, and m = n + 1 for some n : N. n < m,
so P(n) must be true. However, P(n) ⇒ P(n + 1) = P(m), contradicting
¬P(m).3

Therefore, we may prove a proposition ∀ n : N • P(n) by proving P(0)
(which is usually trivial) and the inductive step ∀ n : N • P(n)⇒ P(n + 1).

The principle of strong induction allows us to make a stronger assump-
tion in the inductive step: we seek to prove P(n), on the assumption that
P(k) is true for all natural numbers k < n.

Corollary 1.2.2 (Strong4 Induction).(
∀ n : N •

(
∀ k : N | k < n • P(k)

)
⇒ P(n)

)
⇒
(
∀ n : N • P(n)

)
Proof. Define Q(n : N) =

(
∀ k : N | k < n • P(k)

)
. Q(0) is a vacuous

truth; also, Q(n) ⇒ P(n) is equivalent to Q(n) ⇒ Q(n + 1). Therefore,
the principle of induction applies to Q(n), and so the result follows from
Theorem 1.2.1.

An “inductive proof” is one which makes use of either of these principles.
Such a proof is “by induction on n” (or “by strong induction on n”).

An “inductive definition” of a function f : N → X is one for which the
predicate “f is defined at n : N” can be proven by induction; e.g. f (0) is
defined, and the definition of f (n) depends on values of f (k) for k < n. Such
a function f is “defined inductively”.

2Literally, “If P(0) is true, and for all n, P(n) implies P(n + 1), then for all n, P(n) is
true.” Metaphorically, if we can step onto the first rung of a ladder, and climb from each
rung to the next, then we can reach any rung.

3Metaphorically, if there is an unreachable rung, there is a lowest one, in which case
we can reach the one below it. But then we can climb one more rung, contradicting its
unreachability.

4The corollary is ostensibly weaker, as the premise is stronger.
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1.3 Binomial Coefficients

Definition 1.3.1. For n : N, n! =
n∏

k=1

k is the factorial of n.

Definition 1.3.2.

1. If X is a set, and k : N, X (k) = { S : PX | #S = k }.

2. C : N2 → N is given by C (n, k) = #{1, . . . n}(k). We write

(
n

k

)
to

mean C (n, k). Values of C are binomial coefficients.

Note that by symmetry,5 each element a : X appears in the same number
of sets S : X (k); i.e. ∀ a, b : X • #{ S : X (k) | a ∈ S } = #{ S : X (k) | b ∈ S }.

Proposition 1.3.3. ∀ n, k : N,

1.

(
n

k

)
=

n!

k !(n − k)!
.

2.

(
n

0

)
=

(
n

n

)
= 1,

(
n

1

)
= n, and if k > n, then

(
n

k

)
= 0.

3.

(
n

k

)
=

(
n

n − k

)
.

4.

(
n + 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
.6

5.
n∑

k=0

(
n

k

)
= 2n .

Proof.

1. If the first k elements in an ordering of the set n determine a subset of
cardinality k , then there are k ! possible orderings of the first k elements,
and (n − k)! orderings of the remaining elements; hence, each subset is
given by k !(n − k)! of the n! orderings of the set n.

2. Follows immediately from (1), and the fact that {1, . . . n} has no subsets
of cardinality k > n.

5I.e. Sym(X ) acts transitively on X and X (k).
6Hence, “Pascal’s triangle” computes the binomial coefficients.
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3. Follows immediately from (1).

4.
n!

k !(n − k)!
+

n!

(k + 1)!(n − k − 1)!

=
(n − k)n! + (k + 1)n!

(k + 1)!(n − k)!
=

(n + 1)!

(k + 1)!(n − k)!

5. Let N = {1, . . . n}, then { k : N | k 6 n • N (k) } is a partition of PN ,

so 2n = #PN = #
n⋃

k=0

N (k) =
n∑

k=0

#N (k) =
n∑

k=0

(
n

k

)
.

Theorem 1.3.4 (The Binomial Theorem). ∀ n : N, the polynomial

(X + Y )n =
n∑

k=0

(
n

k

)
X kY n−k

Proof. By induction on n; n = 0 is trivial. Then,
(X + Y )n+1 = (X + Y )(X + Y )n

= (X + Y )
n∑

k=0

(
n

k

)
X kY n−k

=

[
n∑

k=0

(
n

k

)
X k+1Y n−k

]
+

[
n∑

k=0

(
n

k

)
X kY n+1−k

]

=

(
n

0

)
Y n+1 +

[
n∑

k=1

((
n

k − 1

)
+

(
n

k

))
X kY n+1−k

]
+

(
n

n

)
X n+1

=

(
n + 1

0

)
Y n+1 +

[
n∑

k=1

(
n + 1

k

)
X kY n+1−k

]
+

(
n + 1

n + 1

)
X n+1

=
n+1∑
k=0

(
n

k

)
X kY n+1−k .
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1.4 The Inclusion-Exclusion Principle

Lemma 1.4.1. ∀ n : N •
n∑

k=1

(−1)k+1

(
n

k

)
= 1.

Proof. By Theorem 1.3.4,
n∑

k=0

(−1)k
(

n

k

)
= (1 + (−1))n = 0. Therefore,

1 = (−1)0
(

n

0

)
=

n∑
k=0

(−1)k
(

n

k

)
−

n∑
k=1

(−1)k
(

n

k

)
= 0 +

n∑
k=0

(−1)k+1

(
n

k

)
.

Theorem 1.4.2 (Inclusion-Exclusion Principle).
If X is a finite set, and S : PPX , then

#
⋃

S =

#S∑
k=1

(−1)k+1
∑
B :S (k)

#
⋂

B

Equivalently, for A1, . . .An : PX ,

#
n⋃

i=1

Ai =
∑

J :P{1,...n}

(−1)1+#J#
⋂
i :J

Ai

Equivalently,

#(A1 ∪ · · ·An) =
n∑

k=1

(−1)k+1
∑

16i1<...ik6n

#(Ai1 ∩ . . .Aik )

Proof. Given x :
⋃

S , suppose x ∈ A for exactly m of the A : S .

By symmetry, x ∈
⋂

B for exactly

(
m

k

)
of the B : S (k). Also, the terms

for k > m are all 0. Hence, x is counted exactly
m∑
k=1

(−1)k+1

(
m

k

)
= 1 time

by Lemma 1.4.1.

In particular, e.g. #(X ∪ Y ) = #X + #Y −#(X ∩ Y ).
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1.5 Irrational and Transcendental Numbers

Definition 1.5.1. An irrational number is a number which is not ratio-
nal; i.e. it is not in Q.

Proposition 1.5.2. e is irrational.

Proof. Suppose e = p
q
∈ Q with q > 1.

Z 3 p(q − 1)! = q !e = q !
∞∑
n=0

1

n!
=

[
q∑

n=1

q !

n!

]
+

[
∞∑

n=q+1

q !

n!

]

where the first term is an integer.7 Thererefore, the second term is an integer.

However, for k > 1,
q !

(q + k)!
6

1

(q + 1)k
with strict inequality for k > 1,

so

0 <
∞∑

n=q+1

q !

n!
=
∞∑
k=1

q !

(q + k)!
<
∞∑
k=1

1

(q + 1)k
=

1

q
6 1

and hence this term is not an integer; a contradiction.

Definition 1.5.3. For R : {Z,Q,R,C},

1. A monomial in variables X1, . . .Xm is of the form aX k1
1 · · ·X km

m for
a : R, k1, . . . km : N.8

2. A polynomial in one variable X is a sum of monomials in X .

In general, a polynomial f in one variable X has f =
n∑

k=0

akX k for

a1, . . . an : R | an 6= 0, or f = 0.

3. If f is a polynomial in one variable, deg f = n is the degree9 of f , and
deg 0 = −∞.10

4. R[X ] is the set of all polynomials in X with coefficients in R.

5. For f : R(X ), z : C is a root of f if f (z ) = 0.

7For n 6 q , q ! is a multiple of n!, so the first term is a sum of integers.
8For convenience, we will take X 0 to be 1 even when X = 0.
9More generally, the degree of a polynomial in m variables is the largest of the

∑
ki .

10−∞ is not a number, but −∞ < n for any number n.
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Proposition 1.5.4. For z : C, z is a root of a non-zero polynomial in Z[X ]
iff it is a root of a non-zero polynomial in Q[X ]; i.e.(

∃ f : Z[X ] \ {0} • f (z ) = 0
)
⇔
(
∃ g : Q[X ] \ {0} • g(z ) = 0

)
Proof. Given g =

n∑
k=0

pk

qk
X k , let f =

[
n∏

k=0

qk

]
· g . Then f 6= 0, f ∈ Z[X ], and

f (z ) = 0.
The converse is trivial.

Definition 1.5.5.

1. z : C is an algebraic number if it is a root of a non-zero polynomial
in Z[X ].11

2. z : C is a transcendental number if it is not algebraic.

3. A is the set of algebraic numbers.

Proposition 1.5.6. Every rational number is algebraic.

Proof. Given a : Q, a is a root of (X − a) ∈ Q[X ].

Theorem 1.5.7. Liouville’s constant x =
∞∑
n=1

10−n! is transcendental.

Proof. Suppose
d∑

k=0

akx k = 0 for some a1, . . . ad : Z | ad 6= 0. For n : N+, let

An =
n−1∑
i=1

10−i !, Bn = 10−n!, and Cn =
∞∑

i=n+1

10−i !

so that ∀ n : N+,

1. An + Bn + Cn = x .

2. An is an integer multiple of Bn , and if n > 1, Bn < An < 1.

3. If n > d , then Cn < 2 · 10−(n+1)! < 2Bd
n · 10n!d−(n+1)! < Bd

n .

11Or equivalently, Q[X ].
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(An + Bn + Cn)d is a sum of terms of the form Ap
nB q

nC r
n , where p, q , r :

N | p + q + r = d .12

• One term is Bd
n ,

• Each term with r > 0 has Ap
nB q

nC r
n < Cn ,

• The remaining terms are integer multiples of AnBd−1
n = Bd

n ·10n!−(n−1)!.

Similarly, for k : N | k < d , (An + Bn + Cn)k is a sum of terms each of
which is either an integer multiple13 of Bd−1

n = Bd
n · 10n!, or less than Cn .

Hence, for sufficiently large n,

0 = 10n!d

d∑
i=0

aix
i =

1

Bd
n

d∑
i=0

ai(An + Bn + Cn)i = Sn · 10n!−(n−1)! + ad + εn

where Sn ∈ Z. It follows that ad + εn is an integer multiple of 10n!−(n−1)!.
|εn | < MT · 2 · 10n!d−(n+1)!, where M = max06k6d |ak | and T = 3d(d + 1)

is an upper bound for the number of terms in the expansion. Therefore, for
sufficiently large n, |εn | < |ad | < 1

2
· 10n!−(n−1)!, and so ad + εn is not an

integer multiple of 10n!−(n−1)!, a contradiction.

A similar proof shows that for x : R, if

∀ n : N • ∃ p

q
: Q • 0 <

∣∣∣∣x − p

q

∣∣∣∣ < 1

qn

then x is transcendental.14

1.6 Countability

Definition 1.6.1.

1. A set S is countable if ∃ f : N→→ S.15

2. S is uncountable if S is not countable.

Equivalently, ∃ f : S � N. Equivalently, either S is finite or ∃ f : N�→ S .
Note that for X countable, if ∃ f : X →→ Y or ∃ f ′ : Y � X then Y is

countable.
12E.g. by applying Theorem 1.3.4 twice.
13Since for k < d , Bk

n is an integer multiple of Bd−1
n .

14Such an x is a Liouville number, and this result is Liouville’s theorem on diophantine
approximation.

15I.e. S can be enumerated, or “counted”, by the natural numbers, although the list
may be infinitely long.
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Theorem 1.6.2.

1. N2 is countable.

2. If A1, . . .An are countable, then A1 × · · ·An is countable.

3. A countable union of countable sets is countable.

Proof.

1. Let f : N→ N2 be defined inductively by f (0) = (0, 0), and

f (k) = (a, b)⇒ f (k + 1) =

{
(a + 1, b − 1) (b > 0)

(0, a + 1) (b = 0)

Then ∀(a, b) : N2 • f

([
a+b+1∑
j=1

j

]
+ a

)
= (a, b), hence f is surjective.16

2. By strong induction on n; n = 0, 1 are trivial, and n = 2 follows
immediately from (1).

For n > 2, given A1, . . .An+1 countable, A1×· · ·An is countable by the
inductive assumption, and hence A1× · · ·An+1 = (A1× · · ·An)×An+1

is countable by the inductive assumption.

3. Let (Ai)i :I be a countable family of countable sets, with cI : I � N
and for i : I , fi : Ai � N. Define π :

⋃
i :I Ai → I so that a ∈ Aπ(a),

and F :
⋃

i :I Ai → N2 by F (a) = (cIπ(a), fπ(a)(a)).

Given a, b :
⋃

i :I Ai , if F (a) = F (b) then since cI is an injection,
π(a) = π(b), and so since fπ(a) = fπ(b) is an injection, a = b. Hence F
is injective.

The result follows by (1).

Corollary 1.6.3.

1. Q is countable.

2. Q[X ] is countable.

3. A is countable.

16I.e. “rotate N2 clockwise by 3π
4 and read it like a book”.
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Proof.

1. Define f : Q� N2 by f (p
q
) = (p, q).

2. For n : N, Pn = { f : Q[X ] | deg f 6 n } is countable,17 hence Q[X ] =⋃
n:N Pn is a countable union of countable sets.

3. For f : Q[X ] \ {0}, Rf = { z : C | f (z ) = 0 } is finite,18 hence A =⋃
f :Q[X ]\{0}Rf is a countable union of finite sets.

Theorem 1.6.4. R is uncountable.

Proof (Cantor’s Diagonal Argument). Given f : N→ R,

for i : N let ci =

{
4 if the ith decimal place of f (i) is 5,

5 otherwise.

and define x : R by x = c0.c1c2 · · · . ∀ i : N • f (i) 6= x , as they differ in the
ith decimal place. Therefore, f is not surjective.

Corollary 1.6.5. There are uncountably many transcendental numbers.

Proof. Otherwise, R = (R ∩ A) ∪ (R \ A) is a finite union of countable sets,
contradicting Proposition 1.6.2.3 or Theorem 1.6.4.

Theorem 1.6.6 (Cantor’s Theorem). For any set X , @ f : X →→ PX .

Proof. Given f : X → PX , let S = { x : X | x /∈ f (x ) }. Note that S ∈ PX .
By construction, ∀ x : X , x ∈ f (x )⇔ x /∈ S . Therefore, @ x : X • f (x ) = S ,
and f is not surjective.

Hence, #X < #PX < #PPX < . . .

Corollary 1.6.7. PN is uncountable.

Proof. Follows immediately from Theorem 1.6.6.

In particular, if we define X0 = N and Xn+1 =
⋃

k :N P
k Xn , then ∀ n, k :

N • #Xn+1 > #Pk Xn .

17Pn has a natural injection to Qn+1, which is countable by (1) and Theorem 1.6.2.2.
18#Rf 6 deg f . E.g. see Theorem 3.9.6.
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2 Numbers

2.1 Euclid’s Algorithm

Definition 2.1.1. For d , n : Z, d
∣∣ n if ∃ k : Z • n = kd.

Proposition 2.1.2. For a, b, c : Z,

1. a
∣∣ 0, 1

∣∣ a, a
∣∣ a, and 0

∣∣ a ⇔ a = 0.

2. (a
∣∣ b ∧ a

∣∣ c)⇒ a
∣∣(b + c).

3. a
∣∣ b ⇒ a

∣∣ bc.

4. (a
∣∣ b ∧ b

∣∣ c)⇒ a
∣∣ c.

5. a
∣∣ b ⇒ |a| 6 |b|.

6. (a
∣∣ b ∧ b

∣∣ a)⇒ a = ±b.

Proof.

1. 0 = 0 · a, a = a · 1, a = 1 · a, and ∀ k : Z • k · 0 = 0.

2. (b = ka ∧ c = k ′a)⇒ b + c = (k + k ′)a.

3. b = ka ⇒ bc = (kc)a.

4. By (3), a
∣∣ b ⇒ a

∣∣ k ′b = c.

5. If b = ka, then |b| = |k | |a| with |k | > 1, or a = b = 0.

6. By (5), |a| = |b|.

Lemma 2.1.3. ∀ n, k : Z | k > 0 • ∃! q , r : Z | 0 6 r < k • n = qk + r .

Proof.

1. Existence: when n = 0, q = r = 0 is a solution.

Suppose n = qk + r . Then n + 1 = qk + r + 1. If r < k − 1, then
n + 1 = qk + (r + 1) is a solution. Otherwise r = k − 1 and so
n = (q + 1)k + 0 is a solution.

By induction on n, the result holds for n > 0. For n < 0, write −n =
qk +r . If r = 0 then n = (−q)k +0, otherwise n = (−1−q)k +(k−r).
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2. Uniqueness: suppose qk + r = q ′k + r ′, 0 6 r , r ′ < k . (q − q ′)k +
(r − r ′) = 0 and so k

∣∣(r − r ′). It follows that r − r ′ = 0 and then
q = q ′, r = r ′.

This is division with remainders.

Definition 2.1.4. For a, b, c : Z, c is a highest common factor19 of a
and b if:

1. c
∣∣ a ∧ c

∣∣ b.20

2. ∀ d : N • (d
∣∣ a ∧ d

∣∣ b)⇒ d
∣∣ c.21

Proposition 2.1.5.

1. 0 is a highest common factor of 0 and 0.

2. ∀ a : Z, a is a highest common factor of a and 0.

Proof.

1. 0
∣∣ 0 ∧ 0

∣∣ 0 ∧ ∀ d : Z •
(
d
∣∣ 0 ∧ d

∣∣ 0)⇒ d
∣∣ 0.

2. a
∣∣ a ∧ a

∣∣ 0 ∧ ∀ d : Z •
(
d
∣∣ a ∧ d

∣∣ 0)⇒ d
∣∣ a.

Proposition 2.1.6. a, b : Z have at most one highest common factor (up to
a change of sign).

Proof. Suppose c and d are both highest common factors of a and b. Then
c
∣∣ d and d

∣∣ c, so c = kd for some natural number k , and d = k ′c for some
natural number k ′. Hence, c = kk ′c, so either k = k ′ = ±1 and c = ±d , or
c = d = 0.

19The highest common factor is unique, but we cannot define it to be unique.
20“A highest common factor divides both numbers,”
21“and any other common factor divides it.”

13



Theorem 2.1.7. ∀ a, b : N+, a and b have a highest common factor.

Proof (Euclid’s Algorithm). Wlog a > b.
Let r0 = a and r1 = b, and for i > 2, define qi , ri : N such that ri < ri−1

and ri−2 = qiri−1 + ri , so long as ri−1, ri−2 > 0.
Since ri is a decreasing sequence of natural numbers, ∃ n : N • rn = 0

(and thus rn+1 is not defined). Let c = rn−1.
Claim: c

∣∣ a ∧ c
∣∣ b.

Proof of claim: Since rn = 0, c
∣∣ rn ∧ c

∣∣ rn−1.
Also, since ri+2 = ri − qiri+1 for i 6 n − 2,

(
c
∣∣ ri+2 ∧ c

∣∣ ri+1

)
⇒ c

∣∣ ri .
By backwards strong induction on i , it follows that ∀ i : N | i 6 n • c

∣∣ ri ,
and hence c

∣∣ a ∧ c
∣∣ b.

Claim: If d
∣∣ a ∧ d

∣∣ b for some natural number d , then d
∣∣ c.

Proof of claim: By assumption, d
∣∣ r0 ∧ d

∣∣ r1.
Also, since ri+2 = ri − qiri+1 for i 6 2,

(
d
∣∣ ri ∧ d

∣∣ ri+1

)
⇒ d

∣∣ ri+2.
By strong induction on i , it follows that ∀ i : N | i 6 n • d

∣∣ ri , and hence
d
∣∣ c (as c = rn−1).

Therefore, c is a highest common factor of a and b.22

Corollary 2.1.8. ∀ a, b : Z there is a unique non-negative highest common
factor of a and b.

Proof. We already know the result for a, b > 0. Then, it is enough that a
highest common factor of |a| and |b| is also a highest common factor of a
and b. Uniqueness follows from Proposition 2.1.6.

Definition 2.1.9. For a, b : Z,

1. HCF(a) = |a|.

2. HCF(a, b) is the (non-negative) highest common factor of a and b.

3. For n > 2, ai : Z, HCF(a1, . . . an+1) = HCF(HCF(a1, . . . an), an+1).

HCF(a1, . . . an) is a true generalisation of HCF(a, b):

Proposition 2.1.10.

1. ∀ i : N | 1 6 i 6 n • HCF(a1, . . . an)
∣∣ ai .

22Note that this proof is constructive, as it provides an algorithm for computing c. It
is easy to see that the algorithm will terminate in at most b steps; in fact, the worst-case
complexity of the algorithm is O(log b), when a, b are consecutive Fibonacci numbers.
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2. ∀ d : Z •
(
∀ i : N | 1 6 i 6 n • d

∣∣ ai

)
⇒ d

∣∣HCF(a1, . . . an).

Proof. By induction on n. n = 1 is trivial, and n = 2 is Definition 2.1.4.2.
Let h = HCF(a1, . . . an), and h ′ = HCF(a1, . . . an+1). Suppose the result
holds for n.

1. h ′
∣∣ h ∧ h ′

∣∣ an+1 by Definition 2.1.9. Then, for 1 6 i 6 n, h ′
∣∣ h ∣∣ ai by

the inductive assumption.

2. Given d
∣∣ ai for 1 6 i 6 n + 1, d

∣∣ h by the inductive assumption, and
d
∣∣ an+1, hence by Definition 2.1.4, d

∣∣ h ′.

Definition 2.1.11.

1. a, b : Z are coprime (or relatively prime) if HCF(a, b) = 1.

2. S : PZ is coprime if ∀ a, b : S | a 6= b, a, b are coprime.23

Corollary 2.1.12. ∀ a, b : Z • ∃ x , y : Z • ax + by = HCF(a, b).

Proof (Extended Euclidean Algorithm). If a or b is 0, the result is trivial.
Wlog a, b > 0.

Let ri , n be defined as in the proof of Theorem 2.1.7. By definition,
r0 = a · 1 + b · 0 and r1 = a · 0 + b · 1.

If ri−2 = ax + by and ri−1 = ax ′+ by ′ for some natural number i > 2 and
integers x , y , x ′, y ′, then ri = ri−2 − qkri−1 = a(x − qkx ′) + b(y − qky ′).

By strong induction on i , it follows that HCF(a, b) = rn−1 can be written
in this form.24

Theorem 2.1.13. 25

∀ n : N+ • ∀ a1, . . . an : Z • ∃ x1, . . . xn : Z •
n∑

j=1

aj xj = HCF(ai)

23This is not the same as saying HCF(S ) = 1; besides not having defined HCF for
infinite sets, HCF(2, 3, 6) = 1 but HCF(2, 6) = 2.

24Again, the proof is constructive.
25This is a direct generalisation of Corollary 2.1.12.
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Proof. By induction on n. The result for n = 1 is trivial, and the result for
n = 2 is Corollary 2.1.12.

Suppose that HCF(a1, . . . an) =
∑n

i=1 aixi . By Corollary 2.1.12,

∃ x , y : Z • HCF(HCF(a1, . . . an), an+1) = HCF(a1, . . . an) · x + an+1y

And so

HCF(a1, . . . an+1) =

(
n∑

i=1

ai(xxi)

)
+ an+1y

2.2 Integer Linear Equations

An integer linear equation in one variable x : Z is of the form ax = b for
a, b : Z | a 6= 0. This equation has a solution iff a

∣∣ b, as this is precisely
Definition 2.1.1. The solution is necessarily unique.26

We can give a similar condition for an integer linear equation ax +by = c
in two variables x , y : Z, with constants a, b, c : Z | a, b 6= 0, to have a
solution.

Corollary 2.2.1.

∀ a, b, c : Z | a, b 6= 0 • (∃ x , y : Z • ax + by = c)⇔ HCF(a, b)
∣∣ c

Proof. Negating x or y if necessary, wlog a, b > 0.
Suppose ∃ x , y : Z • c = ax + by . Since HCF(a, b)

∣∣ a ∧ HCF(a, b)
∣∣ b, it

follows that HCF(a, b)
∣∣ c.

Conversely, suppose c = k · HCF(a, b) for some k : Z. Then by Corol-
lary 2.1.12, ∃ x , y : Z • a(kx ) + b(ky) = k · HCF(a, b) = c.27

Note that a solution x , y cannot be unique, as a(x + kb) + b(y − ka) = c
is a distinct solution ∀ k : Z.

A similar result can be shown for integer linear equations in any number
of variables.

Theorem 2.2.2. 28 ∀ n : N+ • ∀ a1, . . . an , b : Z | ai 6= 0 •(
∃ x1, . . . xn : Z •

n∑
j=1

aj xj = b

)
⇔ HCF(ai)

∣∣ b
26Because a has a multiplicative inverse 1

a ∈ Q.
27And when this solution exists, we have an algorithm to construct it.
28“For all n, an integer linear equation in n variables has a solution iff the HCF of the

coefficients divides the constant term.”
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Proof. Suppose the xi exist. By Proposition 2.1.10.1, ∀ j • HCF(ai)
∣∣ aj xj ,

and so it follows that HCF(ai)
∣∣ b.

Conversely, suppose b = k · HCF(ai) for some k : Z. Then by Theo-
rem 2.1.13, ∃ xi •

∑n
j=1 aj (kxj ) = b.

2.3 Congruence Modulo n

Definition 2.3.1. For a, b : Z, n : N+, a ≡ b (mod n) if n
∣∣(b − a).

a and b are said to be “congruent modulo n.”

Proposition 2.3.2. ≡ (mod n) is an equivalence relation.

Proof. ∀ a, b, c : Z,

1. Refexivity: n
∣∣(a − a).

2. Symmetry: n
∣∣(b − a)⇒ n

∣∣(a − b).

3. Transitivity:
(
n
∣∣(b − a) ∧ n

∣∣(c − b)
)
⇒ n

∣∣ ((c − b)− (a − b)
)
.

Definition 2.3.3. Zn is the set of equivalence classes for ≡ (mod n).

These equivalence classes are all of the form [a]n = { k : Z • a + kn }. By
Lemma 2.1.3, Zn = {[0]n , . . . [n − 1]n}, and #Zn = n.

Proposition 2.3.4. For a, b, c, d : Z, n : N+, if a ≡ b (mod n) and c ≡ d
(mod n) then:

1. a + c ≡ b + d (mod n).

2. ac ≡ bd (mod n).

3. ∀ k : N+ • ak ≡ bk (mod n).

Proof. Let b = a + pn, d = c + qn for p, q : Z.

1. b + d = a + c + (p + q)n.

2. bd = ac + (pc + qa + pqn)n.

3. By Theorem 1.3.4, bk = (a + pn)k = ak +

(
k−1∑
i=0

(
k

i

)
a ipk−ink−i−1

)
n.
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Definition 2.3.5. ∀[a]n , [b]n : Zn , k : N+,

1. [a]n + [b]n = [a + b]n .

2. [a]n · [b]n = [ab]n .

3. [a]kn = [ak ]n

These are well-defined29 by Proposition 2.3.4. Associativity, commuta-
tivity and distributivity follow immediately from the same properties in Z.30

Where it is clearer, we will write a : Zn to mean [a]n : Zn and a : Z
interchangeably.

Proposition 2.3.6. if a ≡ b (mod n), then HCF(a, n) = HCF(b, n).31

Proof. Let h = HCF(a, n), h ′ = HCF(b, n) and b = a + kn. h
∣∣ a ∧ h

∣∣ n, so
h
∣∣(a + kn). Similarly, h ′

∣∣ a. (h
∣∣ b ∧ h

∣∣ n) ⇒ h
∣∣ h ′, and (h ′

∣∣ a ∧ h ′
∣∣ n) ⇒

h ′
∣∣ h. Therefore h = h ′.

It follows that for [a]n : Zn , HCF(a, n) is well-defined.

Definition 2.3.7. Z∗n = { a : Zn | HCF(a, n) = 1 }.

Proposition 2.3.8. For a : Zn ,

1. ab ≡ 1 (mod n) has a unique solution b : Z∗n iff a ∈ Z∗n .

2. ab ≡ 0 (mod n) has a solution b 6≡ 0 (mod n) iff a /∈ Z∗n .

Proof.

1. By Corollary 2.1.12, a solution exists iff HCF(a, n) = 1.

If ab1 ≡ ab2 ≡ 1 (mod n) then b1 ≡ ab2b1 ≡ ab1b2 ≡ b2 (mod n), so
the solution is unique modulo n.

2. Let f (x : Zn) = ax . By Corollary 2.1.12, 1 /∈ ran f , and so f is not
surjective. Since Zn is finite, f is not injective, so ∃ x , y : Zn | x 6= y •
ax = ay . Hence, a(y − x ) ≡ 0 (mod n) but y − x 6≡ 0 (mod n).

Conversely, suppose ab ≡ 0 (mod n), with b 6≡ 0 (mod n). If a ∈ Z∗n
then ∃ p : Zn • ap ≡ 1 (mod n), but then p ·0 ≡ pab ≡ b 6≡ 0 (mod n).
Therefore a /∈ Z∗n .

29I.e. we get the same results even if we choose different representatives b, d from the
equivalence classes [a]n , [c]n .

30Therefore, Zn is a ring.
31In particular, a,n are coprime iff b,n are coprime.
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2.4 Prime Numbers

Definition 2.4.1.

1. p : N | p > 1 is a prime number (or a prime) if

∀ a, b : Z • p
∣∣ ab ⇒

(
p
∣∣ a ∨ p

∣∣ b)
2. n : N | n > 1 is a composite number if n is not a prime number.

We also say “p is prime” or “n is composite”.

Lemma 2.4.2. If p : N is prime, then ∀ d : N • d
∣∣ p ⇔ (d = 1 ∨ d = p).

Proof. Suppose d
∣∣ p but d 6= 1, p. By Proposition 2.1.2.5, 1 < d < p and so

p = kd with 1 < k < p. Now p
∣∣ kd ⇒

(
p
∣∣ k ∨ p

∣∣ d), contradicting k , d < p.
The converse is trivial.

Proposition 2.4.3. Distinct prime numbers are coprime.

Proof. Let p 6= q be primes, h = HCF(p, q). h
∣∣ p ⇒ (h = 1 ∨ h = p), and

h
∣∣ q ⇒ (h = 1 ∨ h = q). Therefore h = 1.

Proposition 2.4.4. If p is a prime number, then

∀ n : N+ • ∀ a1, . . . aN : Z •

(
p
∣∣ N∏
j=1

aj ⇒ ∃ i : N | 1 6 i 6 N • p
∣∣ ai

)

Proof. By induction on N . N = 1 is trivial, N = 2 is Definition 2.4.1.

Suppose p
∣∣∏N+1

j=1 aj . By Definition 2.4.1,
(

p
∣∣∏N

j=1 aj

)
∨ p

∣∣ aN+1.

Corollary 2.4.5. Z∗p = Zp \ {0}.

Proof. Follows immediately from Lemma 2.4.2.

Therefore, Zp is a field.

Proposition 2.4.6. Every natural number n > 1 has a prime factor.

Proof. Let F = { k : N | k
∣∣ n }. F ) {1}, and so let p = min(F \ {1}).

∀ d : N | 1 < d < p • d - p, as d
∣∣ p ⇒ d

∣∣ n and p is minimal. Therefore, by
Lemma 2.4.2, p is prime.

In particular, every composite n has a factorisation n = pk , with 1 < p, k < n.32

32Hence for composite n, Zn is not an integral domain.
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Corollary 2.4.7. For a, b, c : N+, if a, c and b, c are coprime, then ab, c
are coprime.

Proof. Suppose HCF(ab, c) > 1. By Proposition 2.4.6, HCF(ab, c) has a
prime factor p, with p

∣∣ ab ∧ p
∣∣ c. It follows from Definition 2.4.1 that

p
∣∣ a ∨ p

∣∣ b, and so either a, c are not coprime, or b, c are not coprime.

Theorem 2.4.8. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes p1, . . . pN , for some N : N.33

Let P = 1+
∏N

i=1 pi . By Proposition 2.4.6,34 P has a prime factor q . However,
∀ i : N | 1 6 i 6 N • pi -P , and so the list was not complete, as it did not
contain the prime number q .

Theorem 2.4.9 (Fundamental Theorem of Arithmetic). ∀ n : N+, n has a
unique35 representation as a product of primes.36

Proof. By strong induction on n. n = 1 has a unique representation as the
empty product.

1. Existence: for n > 1, by Proposition 2.4.6 n has a prime factor p0, and
so n = kp0 for some k : N+ | k < n. By the inductive assumption,
k = p1 · · · pN for some N : N, and so n = p0p1 · · · pN .

2. Uniqueness: suppose n = p1 · · · pN = q1 · · · qN for pi , qi prime. By
Proposition 2.4.4, pN

∣∣ qj for some j . By Proposition 2.4.3, pN = qj
and by renumbering the qi , pN = qN and p1 · · · pN−1 = q1 · · · qN−1 < n.
By the inductive assumption, p1, . . . pN−1 and q1, . . . qN−1 are the same
(up to re-numbering).

33Note that this proof does work for N = 0, as 1 + the empty product = 2 has a prime
factor not in the empty list.

34Note that P > 1 by definition.
35The representation is unique up to re-ordering the primes.
36Therefore, Z is a unique factorisation domain.
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2.5 Linear Congruence Equations

A linear congruence equation in m variables xi is of the form

m∑
j=1

aj xj ≡ b (mod n)

Proposition 2.5.1.

1. ax ≡ b (mod n) has a solution iff HCF(a, n)
∣∣ b.

2. ax ≡ b (mod n) has a unique solution iff a ∈ Z∗n .

3. A linear congruence equation in m variables xi has a solution iff
HCF(a1, . . . am , n)

∣∣ b.

Proof.

1. By Corollary 2.2.1.

2. Suppose a ∈ Z∗n . By Proposition 2.3.8.1, a has a multiplicative inverse
p : Zn , and so x = pb is a solution. Also, if ax ≡ ax ′ ≡ b (mod n),
then x ≡ apx ≡ apx ′ ≡ x ′ (mod n).

Otherwise, suppose a /∈ Z∗n . By Proposition 2.3.8.2, ∃ p : Zn • ap ≡ 0
(mod n) ∧ p 6≡ 0 (mod n). It follows that if x is a solution, x + p is a
distinct solution modulo n.

3. The congruence has a solution iff the corresponding integer linear equa-

tion
(∑m

j=1 aj xj

)
+ nxm+1 = b in m + 1 variables xi has a solution.

The result follows from Theorem 2.2.2.

Lemma 2.5.2. For a1, a2, b1, b2 : Z, n1, n2 : N+ | HCF(n1, n2) = 1, the simul-
taneous congruences aix ≡ bi (mod ni) have a solution x iff each congruence
individually has a solution.

Proof. Suppose for i = 1, 2, ∃ xi : Z : aixi ≡ bi (mod ni). By Corol-
lary 2.5.1.2, ∃ p1, p2 : Z • p1n1 ≡ 1 (mod n2) ∧ p2n2 ≡ 1 (mod n1). Then
x = p2n2x1 + p1n1x2 has x ≡ x1 (mod n1) ∧ x ≡ x2 (mod n2), solving both
equations simultaneously.

The converse is trivial.

If x1, x2 are unique modulo n1, n2 respectively, it follows that x is unique
modulo n1n2.
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Theorem 2.5.3 (Chinese Remainder Theorem). A set of m : N+ simulta-
neous linear congruence equations aix ≡ bi (mod ni) in one variable x , with
ni coprime, has a solution iff each congruence individually has a solution.

Proof. By induction on m. m = 1 follows from Proposition 2.5.1.1, and
m = 2 is Lemma 2.5.2.

Given m simultaneous congruences, we can replace two of them with
the single congruence x ≡ p2n2x1 + p1n1x2 (mod n1n2), as in the proof of
Lemma 2.5.2. By Corollary 2.4.7, for i > 2, n1n2, ni are coprime. By the
inductive assumption, the resulting m − 1 simultaneous congruences have a
solution.

The converse is trivial.

By Proposition 2.5.1.2, if the individual solutions the solutions xi are
unique modulo ni , then x is unique modulo

∏
ni .

37

37A practical application of this result is that if an army of N soldiers knows the re-
mainders ri when the soldiers are divided into groups of pi (for sufficiently many primes
that

∏
pi > N ), then the exact size of the army can be computed from the simultaneous

congruences N ≡ ri (mod pi).
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3 Groups

3.1 Groups

Definition 3.1.1 (Group Axioms). If G is a set, and · : G ×G → G is
a binary operator on G, then the pair (G , ·) is a group if:

1. ∀ a, b, c : G • (a · b) · c = a · (b · c).

2. ∃ e : G • ∀ g : G • e · g = g · e = g.

3. ∀ g : G • ∃ g−1 : G • g−1 · g = g · g−1 = e.

e is the identity element, and g−1 is the inverse of g . The binary
operator is group multiplication, and the symbol · is usually omitted. For
k : Z we will write gk to mean the product of |k | copies of g or g−1, with
g0 = e.38 Where it is clearer, we will write G to mean a set G and a group
(G , ·) interchangeably. We may write eG to mean the identity element of a
group G in particular.

Proposition 3.1.2.

1. ∀ g , h : G • gh = g ⇔ hg = g ⇔ h = e.39

2. ∀ g , h : G | gh = e ⇔ hg = e ⇔ h = g−1.40

Proof.

1. gh = g ⇒ g−1gh = g−1g ⇒ h = e. hg = g is similar.

2. gh = e ⇒ ghg = g . By (1), hg = e.

Suppose h1, h2 : G are inverses of g . Then h1 = h1e = h1gh2 = eh2 = h2.

Note that for g , h : G , (h−1g−1)(gh) = h−1(g−1g)h = h−1h = e, and so
(gh)−1 = h−1g−1.

If G is Abelian, where it is clearer we will write 0 to mean e, g + h to
mean g · h, and kg to mean gk .

38The usual exponent rules follow.
39I.e. the identity element is unique, and is the only left-identity and the only right-

identity.
40I.e. the inverse of g is unique, and is the only left-inverse and the only right-inverse.
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Definition 3.1.3. 1 = ({e}, ·), with e · e = e, is the trivial group.

Definition 3.1.4.

1. For g : G, 〈g〉 = { k : Z • gk }.

2. G is cyclic if ∃ g : G • 〈g〉 = G.

3. For n : N+, Cn = (Zn ,+).

If G = 〈g〉 then g is a generator.

3.2 Commutativity

Definition 3.2.1.

1. If g , h : G | gh = hg, then g , h commute.

2. If ∀ g , h : G • gh = hg, then G is Abelian.

Definition 3.2.2.

1. For g : G, CG(g) = { h : G | gh = hg } is the centralizer of g.

2. For H : PG, CG(H ) = { g : G | (∀ h : H • gh = hg) }.

3. Z(G) = CG(G) is the center of G.

Where it is clearer, we will write C to mean CG .

3.3 Homomorphisms

Definition 3.3.1.

1. θ : G → H is a homomorphism if ∀ a, b : G • θ(a · b) = θ(a) · θ(b).

2. An isomorphism is a bijective homomorphism.

3. G ∼= H (G ,H are isomorphic) if there is an isomorphism θ : G → H .
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Proposition 3.3.2. For a homomorphism θ : G → H ,

1. θ(eG) = eH ,

2. ∀ g : G • θ(g−1) = θ(g)−1.

Proof. Given g : G ,

1. θ(g) = θ(eGg) = θ(eG)θ(g), so by Proposition 3.1.2.1 θ(eG) = eH .

2. eH = θ(eG) = θ(gg−1) = θ(g)θ(g−1), and so by Proposition 3.1.2.2
θ(g−1) = θ(g)−1.

Proposition 3.3.3. ∼= is an equivalence relation.

Proof.

1. Reflexivity: idG : G → G is trivially an isomorphism.

2. Symmetry: suppose θ : G → H is an isomorphism. Since θ is a
bijection, θ−1 is a bijection. Given a, b : H , let a = θ(c) and b = θ(d).
Then θ−1(ab) = θ−1(θ(c)θ(d)) = θ−1(θ(cd)) = cd = θ−1(a)θ−1(b).
Hence, θ is a homomorphism.

3. Transitivity: suppose θ : G → H , φ : H → K are isomorphisms. Then
φθ is a bijection, and for a, b : G , φθ(ab) = φ(θ(a)θ(b)) = φθ(a)φθ(b)
and so φθ is a homomorphism.

Definition 3.3.4. For a homomorphism θ : G → H , the kernel of θ is
ker θ = { g : G | θ(g) = eH }.

Proposition 3.3.5. θ is injective iff ker θ ∼= 1.

Proof. Suppose ker θ = {eG}. Then ∀ g , h : G • θ(g) = θ(h) ⇒ θ(gh−1) =
θ(g)θ(h)−1 = eH ⇒ gh−1 = eG ⇒ g = h.

The converse is trivial.

Definition 3.3.6. A homomorphism θ : G → H is trivial if ker θ = G.

Equivalently, θ is trivial iff ran θ ∼= 1.
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3.4 Subgroups

Definition 3.4.1. For H : PG, (H , ·) is a subgroup of (G , ·) if:

1. e ∈ H ,

2. ∀ g : H • g−1 ∈ H ,

3. ∀ g , h : H • gh ∈ H .

We write H 6 G. If H 6= G, then H is a proper subgroup of G, and we
write H < G.

Note that if H 6 G , then H is a group. Where it is clearer, we will write
H 6 G if H ∼= H ′ 6 G .

Definition 3.4.2. G6 = {H : PG | H 6 G }.41

Proposition 3.4.3. 〈g〉 6 G.

Proof. For k , k ′ : Z, e = g0, (gk)−1 = g−k , and gkgk ′ = gk+k ′ .

Proposition 3.4.4. If θ : G → K is a homomorphism, (H C θ) : H → K
is a homomorphism.

Proof. Trivial.

Proposition 3.4.5. If θ : G → H is a homomorphism,

1. ker θ 6 G,

2. ran θ 6 H .

Proof.

1. θ(eG) = eH , and for g1, g2 : ker θ, θ(g−11 ) = θ(g1)
−1 = e−1 = e, and

θ(g1g2) = θ(g1)θ(g2) = e2 = e.

2. eH = θ(eG), for h1, h2 : ran θ, ∃ gi : G • θ(gi) = hi , so h−11 = θ(g−11 ),
and h1h2 = θ(g1g2).

41Note that for H ,K : G6, H ∼= K 6⇒ H = K .
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3.5 Cosets

Definition 3.5.1.

1. For A : PG , g : G, gA = { a : A • ga }, and Ag = { a : A • ag }.

2. For A,B : PG , g : G, AB = { a : A, b : B • ab }.

3. For H 6 G, GH = { g : G • gH } is the set of left-cosets of H .

4. For H 6 G, HG = { g : G • Hg } is the set of right-cosets of H .

Proposition 3.5.2. For A,B : PG, g , h : G,

1. eA = Ae = A.

2. (gh)A = g(hA), (Ag)h = A(gh), and (gA)h = g(Ah).

3. (gA)B = g(AB), (AB)g = A(Bg), and (Ag)B = A(gB).

4. #A = #gA = #Ag.

Proof. By associativity and inverses in G .

Lemma 3.5.3. For H 6 G, GH and HG are partitions of G.

Proof. Let R : G ↔ G be defined by gRh iff g ∈ hH . R is an equivalence
relation, as for a, b, c : G ,

1. Reflexivity: e ∈ H ⇒ a = ae ∈ aH .

2. Symmetry: a ∈ bH ⇒ (∃ g : H • a = bg)

⇒
(
∃ g−1 : H • b = ag−1

)
⇒ b ∈ aH .

3. Transitivity: (a ∈ bH ∧ b ∈ cH )

⇒ (∃ g , h : H • a = bg ∧ b = ch)

⇒ (∃ hg : H • a = c(hg))⇒ a ∈ cH .

HG is similar.
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Corollary 3.5.4. For H 6 G, a, b : G, the following are equivalent42:

1. a ∈ bH ,

2. b−1a ∈ H ,

3. aH = bH ,

4. b−1aH = H .

Proof.

• (1) ⇔ (2): a ∈ bH ⇔ b−1a ∈ b−1bH = H .

• (1) ⇒ (3): By Lemma 3.5.3, a ∈ bH ⇒ aH ∩ bH 6= ∅ ⇒ aH = bH .

• (3) ⇔ (4): aH = bH ⇔ b−1aH = b−1bH = H .

• (3) ⇒ (1): a = ae ∈ aH , and aH = bH , so a ∈ bH .

In particular, for a : G , aH = eH = H iff a ∈ H .

Proposition 3.5.5. For H 6 G,

∀A : PG | A 6= ∅ • AH = H ⇔ HA = H ⇔ A ⊆ H

Proof. If A ⊆ H , then for a : A, h : H , a ∈ H and so ∀ ah : AH • ah ∈ H .
Also, given h : H , choose a : A, then a−1h ∈ H and so h = aa−1h ∈ AH .

Otherwise, ∃ a : A | a /∈ H , so a = ae ∈ AH and AH 6= H .
Similarly for HA = A.

In particular, HH = H .

3.6 Orders

Definition 3.6.1. For g : G, |g | is the least n : N+ such that gn = e. If
there is no such n, |g | =∞.43

|g | is the order of g .

Proposition 3.6.2. ∀ g : G , n : Z | |g | 6=∞ • gn = e ⇔ |g |
∣∣ n.

Proof. Suppose gn = e. By Lemma 2.1.3, n = q |g | + r for 0 6 r < |g | and
e = gn = (g |g|)qgr = eqgr = gr . It follows that r = 0.

Conversely, if n = k |g | then gn = (g |g|)k = e.

42Similarly for right-cosets.
43∞ is not a number, but ∞ > n for any number n.
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Proposition 3.6.3. |g | = # 〈g〉.

Proof. If |g | 6=∞, the result follows by Lemma 2.1.3 and Proposition 3.6.2.
If |g | = ∞, then ga = gb ⇒ e = gb−a ⇒ a = b and so f (k : Z) = gk is a
bijection.44

In particular, ∀ g : G , g0, g1, . . . g |g|−1 are distinct, and G is cyclic iff
∃ g : G • |g | = #G .

Proposition 3.6.4. G is cyclic iff G ∼= Z or G ∼= Cn for some n : N+.

Proof. Suppose G = 〈g〉.
If |g | =∞, let f (k : Z) = gk . Otherwise, let f (k : Z|g|) = gk . Either way,

by Proposition 3.6.3 f is an isomorphism.
Conversely, Z = 〈1〉 and Zn = 〈[1]n〉.

Note that f depends on the choice of the generator g , which is not unique
for n > 2.

Lemma 3.6.5. If a, b : G commute, with |a| , |b| coprime, then |ab| = |a| |b|.

Proof. Let m = |a| , n = |b|. (ab)mn = (am)n(bn)m = e, and so |ab| 6 mn.
Conversely, if |ab| = d , e = (ab)nd = and(bn)d = and so m

∣∣ nd and by
Theorem 2.4.9, m

∣∣ d . Similarly, n
∣∣ d , and so mn

∣∣ d . Hence, mn 6 d .

Theorem 3.6.6. If G is Abelian, and { g : G • |g | } is bounded above, then
∃ g : G • ∀ h : G • |h|

∣∣ |g |.
Proof. Let |g | be maximal. Suppose ∃ h : G • |h| - |g |. By Theorem 2.4.9,
|h| = pk for some prime p - |g |. It follows that

∣∣hk
∣∣ = p and so by Lemma 3.6.5,∣∣hkg

∣∣ = p |g | > |g |, a contradiction.

3.7 Group Actions

Definition 3.7.1.

1. For a set X , Sym(X ) = X �→ X .

2. For n : N+, Sn = Sym({1, . . . n}).

44∞ is not really a cardinal, but here #Z =∞ is used as a shorthand for “Z is infinite”.
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Proposition 3.7.2. For a set X , (Sym(X ), ◦) is a group.

Proof.

1. ∀σ, τ : X �→ X • σ ◦ τ ∈ X �→ X .

2. ◦ is associative.

3. idX : X �→ X .

4. ∀σ : X �→ X • ∃σ−1 : X �→ X • σ−1 ◦ σ = σ ◦ σ−1 = idX .

Sym(X ) is the “permutation group of X ”, or the “symmetric group on
X ”. Sn is the “symmetric group on n elements”.

Definition 3.7.3.

1. A group action on X is a homomorphism θ : G → Sym(X ).

2. θ is a faithful group action if it is injective.

3. θ is a trivial group action if it is a trivial homomorphism.

We say “G acts on X ”, “G acts faithfully on X ”, or “G acts trivially
on X ”. Where G is presented as a subgroup of Sym(X ), the inclusion map
gives the natural group action on X , and we say “G acts naturally on X ”.

Where it is clearer, we will write gx to mean θ(g)(x ).

Proposition 3.7.4. If G acts on X ,

1. ∀ g , h : G , x : X • g(hx ) = (gh)x .

2. ∀ x : X • ex = x .

3. The action is faithful iff ∀ g : G • (∀ x : X • gx = x )⇒ g = e.

Proof.

1. θ(g)(θ(h)(x )) = (θ(g) ◦ θ(h))(x ).

2. θ(e) = idX .

3. By Proposition 3.3.5, θ is faithful iff ker θ ∼= 1.
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Proposition 3.7.5. If G acts on X , and H 6 G, then H acts on X .

Proof. If θ : G → Sym(X ) is a homomorphism, then by Proposition 3.4.4,
(H C θ) : H → Sym(X ) is also a homomorphism.

Definition 3.7.6.

1. The orbit of x , OrbG(x ) = { g : G • gx }.

2. The stabiliser of x , StabG(x ) = { g : G | gx = x }.
Where it is clearer, we will write Orb to mean OrbG , and Stab to mean

StabG .

Proposition 3.7.7. { x : X • Orb(x ) } is a partition of X .

Proof. Let R : X ↔ X be defined as xRy iff x ∈ Orb(y). R is an equivalence
relation, as for x , y , z : X ,

1. Reflexivity: x ∈ Orb(x ) as x = ex .

2. Symmetry: x ∈ Orb(y)⇒ (∃ g : G • x = gy)

⇒
(
∃ g−1 : G • y = g−1x

)
⇒ y ∈ Orb(x ).

3. Transitivity: (x ∈ Orb(y) ∧ y ∈ Orb(z ))

⇒ (∃ g , h : G • x = gy ∧ y = hz )

⇒ (∃ gh : G • x = (gh)z )⇒ x ∈ Orb(z ).

Proposition 3.7.8. ∀ x : X • Stab(x ) 6 G.

Proof. ex = x , and ∀ g , h : Stab(x ), gx = x ⇒ x = g−1x , and (gh)x =
g(hx ) = gx = x .

Theorem 3.7.9 (Cayley’s Theorem). Every group is isomorphic to a sub-
group of a permutation group.

Proof. Let θ(g : G) = φg : Sym(G), where φg(h : G) = gh.

1. φg is injective, as gh = gh ′ ⇒ g−1gh = g−1gh ′ ⇒ h = h ′.

2. θ is injective, as φg = φh ⇒ g = φg(e) = φh(e) = h.

3. ∀ g , h : G • φg ◦ φh = φgh .

Hence, G ∼= ran θ 6 Sym(G).

I.e. every group acts naturally and faithfully on itself by left-multiplication.45

45Or by right-multiplication of inverses, with φ′g(h) = hg−1.
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Proposition 3.7.10. For H 6 G, θ : G → Sym(GH ) defined by θ(a)(bH ) =
(ab)H is a homomorphism.

Proof. If bH = cH then (ab)H = a(bH ) = a(cH ) = (ac)H . Therefore,
θ is well-defined. Also, ∀ g , h : G • g(hH ) = (gh)H . Therefore θ is a
homomorphism.

I.e. every group acts on left-cosets46 of its subgroups.

3.8 Lagrange’s Theorem

Theorem 3.8.1 (Lagrange’s Theorem). If G is a finite47group, and H 6 G,

1. #G = #GH ·#H . In particular, #H
∣∣#G.

2. ∀ g : G • |g |
∣∣#G.

Proof.

1. By Proposition 3.5.2.3 and Lemma 3.5.3, G has a partition into #GH
sets of cardinality #H .

2. By Proposition 3.6.3, Proposition 3.4.3, and (1), |g | = # 〈g〉
∣∣#G .

Corollary 3.8.2. Ck 6 Cn iff k
∣∣ n.

Proof. Suppose n = kd for some d : N+. Let g : Cn be a generator, then
(gd)k = e but for 1 6 k ′ < k , dk ′ < n and so (gd)k

′ 6= e. Hence
∣∣gd
∣∣ = k and〈

gd
〉 ∼= Ck .
The converse follows immediately from Theorem 3.8.1.2.

Theorem 3.8.3 (Orbit-Stabiliser Theorem). If G is a finite47group acting
on a set X , then ∀ x : X • # Orb(x ) · # Stab(x ) = #G. In particular,
Orb(x )

∣∣#G.

Proof. Let H = Stab(x ). By Proposition 3.7.8 and Lemma 3.5.3, GH is a
partition of G . Let f : Orb(x )→ GH be defined by f (gx ) = gH .

1. f is well-defined: if gx = hx , then x = g−1hx ⇒ g−1h ∈ H . By
Corollary 3.5.4, gH = hH .

46Or, similarly, right-cosets.
47In fact, the proof does extend to infinite groups.
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2. f is injective: by Corollary 3.5.4, gH = hH ⇒ g−1h ∈ H ⇒ g−1hx =
x ⇒ gx = hx .

3. f is surjective: given gH : GH , f (gx ) = gH .

Therefore, f is a bijection. The result follows by Theorem 3.8.1.1.

3.9 The Group Z∗n
Definition 3.9.1. Euler’s totient function φ(n : N+) = #Z∗n .

φ(n) counts how many of 1, . . . n are coprime to n.

Proposition 3.9.2. For p prime,

1. φ(1) = 1.

2. φ(p) = p − 1.

3. ∀ k : N+ • φ(pk) = pk−1(p − 1).

4. ∀m, n : N+ | HCF(m, n) = 1 • φ(mn) = φ(m)φ(n).48

Proof.

1. Trivial.

2. Follows immediately from Lemma 2.4.2.

3. Let 1 6 a 6 pk . By Theorem 2.4.9, every such a which is not coprime
to pk has a = pd for some 1 6 d 6 pk−1. Therefore, #Zpk −#Z∗

pk =

pk−1 and so #Z∗
pk = pk − pk−1 = pk−1(p − 1).

4. By Lemma 2.5.2, ax ≡ 1 (mod m) and bx ≡ 1 (mod n) have a unique
simultaneous solution x(a,b) : Z∗mn for each (a, b) : Z∗m × Z∗n .

Conversely, by Proposition 2.3.8.1 each x : Z∗mn has a unique c : Z∗mn

with cx ≡ 1 (mod mn). Letting a ≡ c (mod m), b ≡ c (mod n),
it follows that a ∈ Z∗m and b ∈ Z∗n , and so x = x(a,b). Therefore,
#Z∗mn = #

(
Z∗m × Z∗n

)
= #Z∗m ·#Z∗n .

48By Theorem 2.4.9, it follows that φ(n) can be computed relatively easily, i.e. we don’t
actually have to find all of the HCFs.
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Proposition 3.9.3.
(
Z∗n , ·

)
is a group.

Proof. Follows immediately from Proposition 2.3.8.1.

Theorem 3.9.4 (Fermat-Euler Theorem). ∀ a : Z∗n • aφ(n) = 1.

Proof. Follows immediately from Theorem 3.8.1.2.

Corollary 3.9.5 (Fermat’s Little Theorem). If p is prime, then ∀ a ∈ Zp •
ap ≡ a (mod p).

Proof. a = 0 is trivial. By Corollary 2.4.5, if a 6= 0 then a ∈ Z∗p , and so by
Theorem 3.9.4 and Proposition 3.9.2.2, ap ≡ ap−1a ≡ 1 · a (mod p).

Theorem 3.9.6. For p prime, a polynomial of degree k : N in one variable
has at most k roots in Zp.

Proof. By induction on k . k = 0, 1 are trivial.
Suppose r is a root of f (X ) ≡

∑k+1
i=0 aiX

i (mod p), with ak+1 6= 0.49

Let g(X ) ≡
∑k

i=0 biX
i (mod p) where bk = ak+1 6= 0, and for 0 < i 6 k ,

bi−1 ≡ ai + rbi (mod p).

(X − r)g(X ) ≡
k∑

i=0

bi
(
X i+1 − rX i

)
≡ bkX k+1 +

[
k∑

i=1

(bi−1 − rbi) X i

]
− rb0

≡ ak+1X k+1 +

[
k∑

i=1

aiX
i

]
− rb0

≡ f (X )− a0 − rb0 (mod p)

By evaluating at X = r , it follows that a0 + rb0 ≡ 0 (mod p) and f (X ) =
(X − r)g(X ). By Proposition 2.3.8.2 and Corollary 2.4.5, if f (x ) = 0, either
x = r or g(x ) = 0. By the inductive assumption, g(X ) has at most k roots,
and so f (X ) has at most k + 1.50

49Since deg f ∈ N, f is not the zero polynomial.
50The only fact we used about Zp was that ab = 0⇒ a = 0 ∨ b = 0, so this proof also

works for Z[X ], Q[X ], R[X ] and C[X ]. See IB Groups, Rings and Modules.
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Corollary 3.9.7. For p prime,

1. ∀ a : Zp, a has at most two square roots.

2. ∀ a : Z∗p • a = a−1 ⇔ a ≡ ±1 (mod p).

Proof.

1. By Theorem 3.9.6, X 2 − a (mod p) has at most two roots.51

2. a is a root of X 2 − 1 (mod p). By (1), there are no more roots.

Theorem 3.9.8. For p prime, Z∗p is cyclic.

Proof. By Theorem 3.6.6, ∃ g : Z∗p • ∀ a : Z∗p • |a|
∣∣ |g |, and so ∀ a : Z∗p •

a |g| ≡ 1 (mod p). It follows that X |g| − 1 has p − 1 roots in Zp and so by
Theorem 3.9.6, p−1 6 |g |. By Theorem 3.8.1.2, |g | = p−1 and 〈g〉 = Z∗p .

A generator of Z∗p is also called a primitive root modulo p.

Corollary 3.9.9 (Wilson’s Theorem).

1. For p prime, (p − 1)! ≡ −1 (mod p).

2. For n composite, (n − 1)! ≡ 0 (mod n).

Proof.

1. p = 2 is trivial. Suppose p = 2k + 1 is prime.52

Let g : Z∗p be a generator. Since (gk)2 ≡ 1 (mod p) but |g | 6= k , by
Corollary 3.9.7.1 gk ≡ −1 (mod p).

By Corollary 2.4.5 and Corollary 3.9.5,

(p − 1)! ≡
∏
a:Z∗p

a ≡
p−1∏
i=1

g i ≡ g
p(p−1)

2 ≡ (gp)k ≡ gk ≡ −1 (mod p)

2. By Proposition 2.4.6, n has a factorisation n = ab with 1 < a, b < n,
so ab ≡ 0 (mod n), and the product (n − 1)! includes a, b.

51For p > 2, if b 6= 0 is a square root, −b is a distinct square root, and it follows that
exactly half of Z∗

p are squares.
522 is the only even prime number. It is often a special case because Z∗

2
∼= 1.
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Corollary 3.9.10. For p prime, Z∗p contains a primitive nth root of 1 iff
p ≡ 1 (mod n).

Proof. Follows immediately from Corollary 3.8.2.

Corollary 3.9.11. For p prime, −1 is a square modulo p iff p = 2 or p ≡ 1
(mod 4).

Proof. p = 2 is trivial. If p > 2, −1 6≡ 1 (mod p) and so if a : Z∗p | a2 ≡ −1
(mod p), then |a| = 4. The result follows by Corollary 3.9.10.

3.10 Conjugation

Definition 3.10.1.

1. For a, g : G, ag = g−1ag.

2. For A : PG, g : G, Ag = g−1Ag.

3. For a, b : G, a ∼ b if ∃ g : G • a = bg .

4. For A,B : PG, A ∼ B if ∃ g : G • A = B g .

We say ag is the “conjugation of a by g”, and “a,b are conjugate”.

Definition 3.10.2. For g : G, cclG(g) = { h : G | h ∼ g } is the conjugacy
class of g.

Where it is clearer, we will write ccl to mean cclG .

Proposition 3.10.3. For a, b, g , h : G, and A,B : PG,

1. ae = a, and Ae = A.

2. a = ag iff a, g commute.

3. (a−1)g = (ag)−1, and (A−1)g = (Ag)−1.

4. (ag)h = agh , and (Ag)h = Agh .

5. (ab)g = agbg .

6. If a, b commute, then ag , bg commute.

Proof.

1. e−1ae = a.

36



2. ag = ga ⇔ g−1ag = g−1ga = a.

3. g−1a−1g = (g−1ag)−1.

4. h−1(g−1ag)h = (gh)−1a(gh).

5. g−1(ab)g = (g−1ag)(g−1bg).

6. agbg = (ab)g = (ba)g = bgag .

Similarly for A,B : PG .

Proposition 3.10.4. ∼ is an equivalence relation.

Proof.

1. Reflexivity: a = ae .

2. Symmetry: a = bg ⇒ b = ag−1
.

3. Transitivity: (a = bg ∧ b = ch)⇒ a = (ch)g = chg .

Similarly for A,B : PG .

It follows that { g : G • ccl(g) } is a partition of G .

Theorem 3.10.5. For g : G,

1. φg(a : G) = ag is an isomorphism.

2. ψg(A : PG) = Ag is a bijection.

3. (G6 C ψg) ∈ Sym(G6), i.e. if H 6 G, then H g 6 G.

4. θ : G → Sym(G) given by θ(g) = φg is a homomorphism.

5. Θ : G → Sym(PG) given by Θ(g) = ψg is a homomorphism.

6. Θ′ : G → Sym(G6) given by Θ(g) = (G6 C ψg) is a homomorphism.

Proof.

1. φg is a homomorphism by Proposition 3.10.3.5.

φg is injective: ag = bg ⇒ (ag)g
−1

= (bg)g
−1 ⇒ a = b.

φg is surjective: given a : G , φg(ag−1
) = (ag−1

)g = a.

2. Similarly, ψg ∈ Sym(PG) is injective and surjective.
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3. If H 6 G , e = eg ∈ H g , ag ∈ H g ⇒ (ag)−1 = (a−1)g ∈ H g , and
ag , bg ∈ H g ⇒ agbg = (ab)g ∈ H . Therefore, ψg(H ) 6 G .

4. By Proposition 3.10.3.4, φg ◦ φh = φgh .

5. Similarly, Θ is a homomorphism.

6. Similarly, Θ′ is a homomorphism.

I.e. G acts on G , PG and G6 by conjugation.53

Corollary 3.10.6.

1. ∀ a : G • C(a) 6 G.

2. ∀A : PG, C(A) 6 G.

Proof.

1. G acts on itself by conjugation. By Proposition 3.10.3.2, Stab(a) =
C(a). The result follows by Proposition 3.7.8.

2. Similarly, G acts on PG by conjugation, and Stab(A) = C(A).

Corollary 3.10.7. ∀ g : G • # ccl(g) · # C(g) = #G. In particular,
# ccl(g)

∣∣#G.

Proof. When G acts on itself by conjugation, Orb(g) = ccl(g). The result
follows by Theorem 3.8.3.

3.11 Normal Subgroups

Definition 3.11.1. H EG if H 6 G and ∀ g : G • H g = H .

We say “H is a normal subgroup of G” or “H is normal in G”. If
H < G is normal, we write H /G .

53Also, if H 6 G , then H also acts on G , PG and G6 by Proposition 3.7.5.
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Theorem 3.11.2. For H 6 G, the following are equivalent:

1. ∀ g : G • H g = H (i.e. H EG).

2. ∀ g : G • H g ⊆ H .

3. ∀ g : G • gH = Hg.

4. If K 6 G, then K ∼ H ⇒ K = H .

5. If K 6 G, then K ∼ H ⇒ KH = H

6. ∀ a, b, g : G | aH = bH • agH = bgH .

7. ∀ a, b : G • aHbH = abH .

Proof.

• (1) ⇒ (2): Trivial.

• (1) ⇔ (3): g−1Hg = H ⇔ Hg = gH .

• (1) ⇒ (4): K ∼ H ⇒ K = H g ⇒ K = H .

• (2) ⇒ (1): H g−1 ⊆ H ⇒ H ⊆ H g . Also, H g ⊆ H , so H g = H .

• (3) ⇒ (6): aH = bH ⇒ aHg = bHg ⇒ agH = bgH .

• (3) ⇒ (7): Hb = bH ⇒ aHbH = abHH = abH .

• (4) ⇒ (1): H g ∼ H ⇒ H g = H .

• (4) ⇒ (5): K ∼ H ⇒ K = H ⇒ KH = HH = H .

• (5) ⇒ (2): H g ∼ H ⇒ H gH = H . By Proposition 3.5.5, H g ⊆ H .

• (6) ⇒ (2): ∀ h : H • g−1hH = g−1H ⇒ g−1hgH = g−1gH = H . By
Proposition 3.5.5, hg ∈ H , and so H g ⊆ H .

• (7) ⇒ (5): Let K = H g , then KH = g−1HgH = gg−1HH = H .

Definition 3.11.3.

1. For a : G, NG(a) = { g : G | ag = a } is the normalizer of a.

2. For A : PG, NG(A) = { g : G | Ag = A }.

Where it is clearer, we will write N to mean NG . Note that although by
Proposition 3.10.3.2, ∀ a : G • N(a) = C(a), this is not true for A : PG .

39



3.12 Quotient Groups

Definition 3.12.1. For H EG, G/H = (GH , ·), with aH · bH = aHbH .

G/H is “the quotient of G over H ”.

Proposition 3.12.2. G/H is a group.

Proof.

1. · is well-defined: by Theorem 3.11.2.7, aHbH = abH ∈ GH .

2. Associativity: follows immediately from associativity in G .

3. Identity: eG/H = eH = H . ∀ gH : GH • H · gH = gH · H = gH .

4. Inverses: (gH )−1 = g−1H . ∀ gH : GH • gH · g−1H = gg−1H = H .

Since Theorem 3.11.2.7 is equivalent to Theorem 3.11.2.1, H EG is pre-
cisely the condition on which · is well-defined.

Theorem 3.12.3 (The Isomorphism Theorem).

1. If θ : G → H is a homomorphism, then ker θEG.

2. If θ : G → H is a homomorphism, then G/ker θ ∼= ran θ.

3. If H EG, then π : G → G/H given by π(g) = gH is a homomorphism,
and kerπ = H .

Proof. Let K = ker θ.

1. K 6 G by Proposition 3.4.5.1. Given g : G , a : K , θ(ag) = θ(a)θ(g) =
eH . Hence, ∀ a : K • ag ∈ K and so K g = K .

2. Define φ : G/K → ran θ by φ(aK ) = θ(a). aK = bK ⇔ a−1b ∈ K , so
θ(a) = θ(a)θ(a−1b) = θ(b) and hence φ is well-defined.

φ(aK · bK ) = φ(abK ) = θ(ab) = θ(a)θ(b) = φ(aK )φ(bK ), and so φ is
a homomorphism.

φ(aK ) = φ(bK ) ⇒ θ(a) = θ(b) ⇒ θ(a−1b) = eH ⇒ a−1b ∈ K ⇒
aK = bK , and so φ is injective.

Given h = θ(a) : ran θ, φ(aK ) = h, and so φ is surjective.

3. By Theorem 3.11.2.7, π(ab) = abH = aHbH = π(a)π(b), and so π is a
homomorphism.

π(a) = eG/H = H ⇔ aH = H ⇔ a ∈ H , and so kerπ = H .
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3.13 The Group Sn

Definition 3.13.1.

1. σ : Sn is a cycle of length k : N+ if ∃ a1, . . . ak : {1, . . . n} • σ(aj ) =
aj+1 for 1 6 j < k, σ(ak) = a1, and for x /∈ {a1, . . . ak}, σ(x ) = x .

2. If σ, τ are cycles, and ∀ x : {1, . . . n} • either σ(x ) = x or τ(x ) = x ,
then σ, τ are disjoint.

3. A transposition is a cycle of length 2.

We will write σ = (a1a2 · · · ak).

Proposition 3.13.2.

1. For a1, . . . ak : {1, . . . n}, (a1a2 · · · ak) = (a2a3 · · · aka1).

2. If σ, τ : Sn are disjoint cycles, then σ, τ commute.

3. ∀ a : {1, . . . n} • (a) = ι is the identity of Sn .

Proof.

1. σ(ai) = ai+1 for 2 6 i < k , σ(ak) = a1, and σ(a1) = a2.

2. ∀ x : {1, . . . n} • wlog τ(x ) = x . If σ(x ) 6= x , then σ2(x ) 6= σ(x ), so
τ(σ(x )) = σ(x ) = σ(τ(x )). As Sn acts faithfully on {1, . . . n}, στ = τσ.

3. (a)a = a, and for x 6= a, (a)x = x .

Theorem 3.13.3. ∀σ : Sn • σ is a product of disjoint cycles.

Proof. Define m(σ) = #{ x : {1, . . . n} • σ(x ) 6= x }. We proceed by strong
induction on m(σ). m(σ) = 0 is trivial.

Given x : {1, . . . n} | σ(x ) 6= x , let k = min{ i : N+ • σi(x ) = x }.54 For
1 6 i , j 6 k , if σi(x ) = σj (x ) then σ|j−i |(x ) = x so i = j . Hence the σi(x )
are distinct, σ(σi(x )) = σi+1(x ), and σ(σk−1(x )) = x .

Therefore, γ = (x σ(x )σ2(x ) · · · σk−1(x )) is a cycle of length k > 1, and
m(σγ−1) = m(σ) − k < m(σ), so σγ−1 is a product of disjoint cycles which
are disjoint to γ, hence σ = (σγ−1)γ is a product of disjoint cycles.

54The set is non-empty as σ#Sn = ι.
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Corollary 3.13.4. ∀σ : Sn • σ is a product of transpositions.

Proof. By Theorem 3.13.3, it is sufficient to show that every cycle is a product
of transpositions. By induction on the length of the cycle k , k = 1, 2 are
trivial, and (a1a2 · · · ak+1) = (a1ak+1)(a1a2 · · · ak).

Lemma 3.13.5. For σ : Sn ,

1. For α = (a1a2 · · · ak), ασ = (σ−1(a1)σ
−1(a2) · · · σ−1(ak)).

2. For disjoint cycles α1, . . . αm : Sn , ασ1 , . . . α
σ
m are disjoint cycles, and(

m∏
i=1

αi

)σ
=

m∏
i=1

ασi

3. τ : Sn is conjugate to σ iff σ, τ are each products of the same number
of disjoint cycles of the same lengths.55

Proof.

1. For 1 6 i < k , ασ(σ−1(ai)) = σ−1(ai+1), α
σ(σ−1(ak)) = σ−1(a1), and

for x /∈ {σ−1(a1), . . . σ
−1(ak)}, σ(x ) /∈ {a1, . . . ak}, so α(σ(x )) = σ(x ),

so ασ(x ) = x .

2. By (1), Proposition 3.13.2.2, and Proposition 3.10.3.6.

3. By Theorem 3.13.3, (1), and (2).

Theorem 3.13.6. For n > 2,

1. There is a homomorphism ζ : Sn → C2
∼= ({1,−1}, ·) which, for any

transposition α : Sn , ζ(α) = −1.

2. If θ : Sn → C2 is a non-trivial homomorphism, then θ = ζ.

55Not counting trivial cycles (a).
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Proof.

1. Define ζ : Sn → Q by ζ(σ) =
n−1∏
i=1

n∏
j=i+1

σ(j )− σ(i)

j − i
.

∀σ : Sn • σ is a bijection, so |ζ(σ)| = 1, hence ran ζ = {1,−1}.
Also, ∀σ, τ : Sn •

ζ(στ) =
n−1∏
i=1

n∏
j=i+1

στ(j )− στ(i)

j − i

=

[
n−1∏
i=1

n∏
j=i+1

στ(j )− στ(i)

τ(j )− τ(i)

]
·

[
n−1∏
i=1

n∏
j=i+1

τ(j )− τ(i)

j − i

]

=

[
n−1∏
i=1

n∏
j=i+1

σ(j )− σ(i)

j − i

]
·

[
n−1∏
i=1

n∏
j=i+1

τ(j )− τ(i)

j − i

]
= ζ(σ) · ζ(τ)

as τ is a bijection, so the product is over the same terms.56 Hence, ζ
is a homomorphism.

For transpositions α1, α2 : Sn , by Lemma 3.13.5.3 ∃σ : Sn • α2 = ασ1 .
C2 is Abelian, so ζ(α2) = ζ(α1)

ζ(σ) = ζ(α1). It is easy to check that
ζ(1 2) = −1, and the result follows.

2. As before, for transpositions α1, α2 : Sn , θ(α1) = θ(α2).

By Corollary 3.13.4, ∀σ : Sn • σ is a product of transpositions α1, . . . αm ,
so θ(σ) = θ(α1)

m . Therefore, if θ(α1) = 1 then θ is trivial, otherwise
θ(α1) = −1 and θ = ζ.

Definition 3.13.7. For σ : Sn , ζ(σ) is the signature of σ.

Corollary 3.13.8. A product of an even number of transpositions cannot be
written as a product of an odd number of transpositions, and vice versa.

Proof. If σ : Sn is a product of m transpositions, then ζ(σ) = (−1)m .

Definition 3.13.9. For n > 2, An = ker ζ is the alternating group on n
elements.

By Theorem 3.12.3, An / Sn , and Sn/An
∼= C2.

56Where i < j but τ(i) > τ(j ),
στ(j )− στ(i)

τ(j )− τ(i)
=
στ(i)− στ(j )

τ(i)− τ(j )
.
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A Appendix

A.1 The Natural Numbers

Definition A.1.1. The set of natural numbers N is defined as follows:

1. ∅ ∈ N.

2. ∀ n : N • (n ∪ {n}) ∈ N.

3. ∀ S : PN •
(
∅ ∈ S ∧ ∀ n : S • (n ∪ {n}) ∈ S

)
⇒ S = N.

Note that by this definition, 0 = ∅, #n = n, and “n + 1” = n ∪ {n}.

Definition A.1.2.

1. N+ = N \ {0}.

2. + : N2 → N is defined as ∀m, n : N, n + 0 = n, n + 1 = (n ∪ {n}),
and n + (m + 1) = (n + m) + 1.

3. · : N2 → N is defined as ∀m, n : N, n · 0 = 0, and (n + 1) · m =
(n ·m) + m.

4. < : N↔ N is defined as m < n iff m ∈ n.

By strong induction on n, + and · are defined for all natural numbers.
Note that ∀ n : N, n = { k : N | k < n } and n + 1 = { k : N | k 6 n }.

Also, m < n iff m ⊂ n.
We will write mn to mean a product of n copies of m.

Definition A.1.3. For S : PN | S 6= ∅,

1. If ∃m : N • ∀ n : S • n < m,57 then max S =
⋃
n:S

n.

2. min S =
⋂
n:S

n.

Where max S or min S are defined, they are natural numbers. In partic-
ular, every non-empty set S ⊆ N has a least element min S .58

57I.e. S is non-empty and bounded-above.
58This is the well-ordering principle.
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A.2 The Integers

Definition A.2.1. Let R : N2 ↔ N2 be the equivalence relation generated by
∀ a, b, k : N • (a, b)R(a + k , b + k).59

1. Z = N2/R is the set of integers.

2. Z× = Z \ {[(0, 0)]}.

3. − : Z→ Z is defined as −[(a, b)] = [(b, a)].60

4. + : Z2 → Z is defined as [(a, b)] + [(c, d)] = [(a + b, c + d)].61

5. · : Z2 → Z is defined as [(a, b)] · [(c, d)] = [(ac + bd , ad + bc)].62

6. < : Z↔ Z is defined as [(a, b)] < [(c, d)] iff a + d < b + c.63

We will identify N ⊂ Z by the inclusion map ι(n : N) = [(n, 0)]; i.e. we
will write n to mean ι(n). Note that ι commutes with +, ·, and <,64 and
[(a, b)] = ι(a) + (−ι(b)). We will write a − b to mean a + (−b).

A.3 The Rational Numbers

Definition A.3.1. Let R : (Z×Z×)↔ (Z×Z×) be the equivalence relation
generated by ∀ a : Z, b, k : Z× • (a, b)R(ak , bk).65

1. Q = (Z× Z×)/R is the set of rational numbers.

2. Q∗ = Q \ {[(0, 1)]}, and Q+ = { [(a, b)] : Q • ab > 0 }.

3. − : Q→ Q is defined as −[(a, b)] = [(−a, b)].66

4. + : Q2 → Q is defined as [(a, b)] + [(c, d)] = [(ad + bc, bd)].67

59With equivalence classes [(a, 0)] = { k : N • (a + k , k) } and [(0, b)] = { k : N •
(k , b + k) }.

60This is well-defined, as [(b + k , a + k)] = [(b, a)].
61This is well-defined, as [(a + k , b + k)] + [(c + k ′, d + k ′)] = [(a + c + (k + k ′), b + d +

(k + k ′))] = [(a + c, b + d)].
62Convince yourself that this is well-defined.
63This is well-defined, as [(a+k , b+k)] < [(c+k ′, d+k ′)] iff a+d+(k+k ′) < b+c+(k+k ′)

iff a + d < b + c.
64I.e. ι(m + n) = ι(m) + ι(n), ι(m · n) = ι(m) · ι(n), and ι(m) < ι(n) iff m < n.
65With equivalence classes [(0, 1)] = { k : Z× • (0, k) } and [(a, b)] = { k : Z× • (ak , bk) }

for a, b coprime.
66This is well-defined, as [(−ak , bk)] = [(−a, b)].
67Convince yourself that this is well-defined.

45



5. · : Q2 → Q is defined as [(a, b)] · [(c, d)] = [(ac, bd)].68

6. −1 : Q∗ → Q∗ is defined as [(a, b)]−1 = [(b, a)].69

7. < : Q↔ Q is defined as [(a, b)] < [(c, d)] iff abd2 < b2cd.70

We will identify Z ⊂ Q by the inclusion map ι(a : Z) = [(a, 1)]. Note
that ι commutes with +, ·, and <, and [(a, b)] = ι(a) · ι(b)−1. We will write
a
b

to mean a · b−1, and a−n to mean (a−1)n .

A.4 The Real Numbers

Definition A.4.1. Let P(s : PQ,m : Q) be the predicate ∀ x : s • x 6 m,71

B = { s : PQ | s 6= ∅ ∧ (∃m : Q • P(s ,m)) }

and R : B ↔ B be the equivalence relation defined by

∀ s , t : B | (∀m : Q • B(s ,m)⇔ B(t ,m)) • sRt

1. R = B/R is the set of real numbers.

2. R∗ = R \ {[{0}]}, and R+ = { [s ] : R | ¬P(s , 0) }.

3. − : R→ R is defined as −[s ] = [{m : Q | P(s ,m) • −m }].72

4. + : R2 → R is defined as [s ] + [t ] = [{ x : s , y : t • x + y }].

5. − : R2 → R is defined as [s ]− [t ] = [s ] + (−[t ]).

6. · : R2 → R is defined for [s ], [t ] : R+ as
[s ] · [t ] = [{ x : s , y : t | x , y > 0 • xy }],
±[s ] · ±[t ] = ±([s ] · [t ]),73 and [{0}] · [s ] = [s ] · [{0}] = [{0}].

7. −1 : R∗ → R∗ is defined for [s ] : R+ as
[s ]−1 = [{m : Q | P(s ,m) • m−1 }], and (−[s ])−1 = −([s ]−1).

8. < : R↔ R is defined as [s ] < [t ] iff [s ] 6= [t ] and
∀m : Q • P(t ,m)⇒ P(s ,m).

We will identify Q ⊂ R by the inclusion map ι(a : Q) = [{a}]. Note that
ι commutes with +, ·, −1 and <.

68This is well-defined, as [(ak , bk)] · [(ck ′, dk ′)] = [(ac(kk ′), bd(kk ′))] = [(ac, bd)].
69This is well-defined, as [(bk , ak)] = [(b, a)].
70This is well-defined, as [(ak , bk)] < [(ck ′, dk ′)] iff abd2(kk ′)2 < b2c(kk ′)2 iff abd2 <

b2cd .
71I.e. s is “bounded above” by m.
72These are all well-defined, as [s] = [s ′]⇒ (P(s,m)⇔ P(s ′,m)).
73I.e. [s] · −[t ] = −[s] · [t ] = −([s] · [t ]), and −[s] · −[t ] = [s] · [t ].
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Definition A.4.2. If S : PR | S 6= ∅,

1. If ∃m : R • P(S ,m),74 sup S =

⋃
[s]:S

s

 is the supremum of S .

2. If ∃m : R • P({ x : S • −x },m), inf S = − sup{ x : S • −x } is the
infimum of S .

In particular, every non-empty bounded-above subset S of R has a least
upper bound sup S .75

A.5 The Complex Numbers

Definition A.5.1.

1. C = R2 is the set of complex numbers.

2. C∗ = C \ {(0, 0)}.

3. Re, Im : C→ R are defined as Re(a, b) = a, and Im(a, b) = b.

4. ∗ : C→ C is defined as (a, b)∗ = (a,−b).

5. |·| : C→ R is defined as |(a, b)| =
√

a2 + b2.76

6. − : C→ C is defined as −(a, b) = (−a,−b).

7. + : C2 → C is defined as (a, b) + (c, d) = (a + c, b + d).

8. − : C2 → C is defined as (a, b)− (c, d) = (a, b) + (−(c, d)).

9. · : C2 → C is defined as (a, b) · (c, d) = (ac − bd , ad + bc).

10. −1 : C∗ → C∗ is defined as (a, b)−1 =

(
a

a2 + b2
,
−b

a2 + b2

)
.

< is not defined.
We will identify R ⊂ C by the inclusion map ι(a : R) = (a, 0). Note that

ι commutes with +, ·, and −1. We define i ∈ C as i = (0, 1).

74Extend P to (S : PR,m : R). I.e. S is a non-empty, bounded-above set of real
numbers.

75Note that ∀[s], [t ] : R • (sup s = sup t)⇔ ([s] = [t ]), and so R = { s : B • sup s }.
76For x : R | x > 0, we can define

√
x e.g. as sup{ y : R | y2 6 x }.
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A.6 Arithmetic

Proposition A.6.1. Over N, Z, Q, R, and C, where they are defined,

1. a + 0 = a, and 1 · a = a.

2. −a = (−1) ·a, −(−a) = a, a +(−a) = 0, (a−1)−1 = a, and a ·a−1 = 1.

3. (a · b)−1 = a−1 · b−1.

4. +, · are associative77 and commutative,78 and · distributes over +.79

5. | | obeys the triangle inequality, i.e. |a + b| 6 |a|+ |b|.

6. a > b iff b < a, a 6 b iff (a < b) ∨ (a = b), and a > b iff b 6 a.

7. < is transitive and antisymmetric,80 and <, =, > are a trichotomy.81

8. If a < b then −b < −a, a + c < b + c, for d > 0, ad < bd, and if
a > 0 then b−1 < a−1. Also, a 6 b iff ∃ c > 0 • a + c = b.

Proof. Omitted.

Definition A.6.2. For a non-empty finite set or sequence S = (x1, . . . xn) of
numbers (e.g. natural numbers, integers. . . ),

1.
∑

S is the sum of the elements of S , i.e.
∑

S = x1 + · · · xn .

2.
∏

S is the product of the elements of S , i.e.
∏

S = x1 · · · xn .

3.
∑
∅ = 0, and

∏
∅ = 1.82

These are all defined, by induction on n, and associativity and commu-
tativity83 of + and ·.

We will write
∑

variables expression to mean
∑

( variables • expression ).84

In particular,
∑n

k=1 expression means
∑

k :{1,...n} expression.

(Similarly for
∏

).

77I.e. (a + b) + c = a + (b + c) and (a · b) · c = a · (b · c).
78I.e. m + n = n + m and m · n = n ·m.
79I.e. a · (b + c) = a · b + a · c.
80I.e. (a < b)⇒ ¬(b < a).
81I.e. exactly one of a < b, a = b, a > b is true. Also, ((a 6 b) ∧ (a > b))⇒ (a = b).
82Hence, if S = U ∪V and U ∩V = ∅, then

∑
S =

∑
U +

∑
V and

∏
S =

∏
U ·
∏

V .
83I.e. the sum or product of a set S is independent of how it is enumerated.
84We use a sequence rather than a set, as e.g.

∑
(1, 1) = 2 6=

∑
{1, 1} =

∑
{1} = 1.
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