IA Numbers and Sets, Groups and Geometry

Andrew Kay

September 28, 2014

Abstract

These notes are adapted from my notes taken from Part IA of the Mathematical Tripos at the University of Cambridge in 2006-2007:

- Numbers and Sets, lectured by Prof. Imre Leader.
- Algebra and Geometry, "Groups and Geometry", lectured by Prof. Thomas Körner.

The two modules are consolidated in this text as each contain proofs which depend on results from the other. Readers of Mathematics at Cambridge should note that neither module is covered exhaustively, but the missing parts from each can be found in my notes on *Sets*, *Logic, Relations, and Functions* and *IA Analysis I*, and *IA Vectors* and Matrices respectively.

Z notation is used in many places; see my notes on *Sets, Logic, Relations, and Functions* for definitions of unfamiliar symbols and words.

1 Sets

1.1 Sets of Numbers

The set $\mathbb{N} = \{0, 1, 2, ...\}$ of **natural numbers** is defined by three important properties:

- 1. There is a "first" natural number 0.1
- 2. Every natural number n has a "next" number n + 1.
- 3. Every non-empty subset of \mathbb{N} has a minimum element.

The set $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ of **integers** is defined by introducing *additive inverses* -n for each natural number n.

 $\mathbb Z$ is a **ring**, meaning we can add, subtract and multiply according to the usual rules.

The set \mathbb{Q} of **rational numbers** is defined by introducing *multiplicative* inverses $\frac{1}{n}$ for each non-zero integer n.

The set \mathbb{R} of **real numbers** is defined so that every non-empty boundedabove subset $S \subset \mathbb{R}$ has a *supremum* or *least upper bound* sup S; i.e. every upper bound m of S must have $m \ge \sup S$.

The set \mathbb{C} of **complex numbers** is defined by introducing i, the *imaginary unit*, which satisfies $i^2 = -1$.

 \mathbb{Q} , \mathbb{R} and \mathbb{C} are **fields**, meaning we can add, subtract and multiply and divide according to the usual rules.

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}.$

(See the Appendix for formal definitions.)

¹In some texts, the first natural number is 1. We will write $\mathbb{N}_{+} = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \ldots\}.$

1.2 Induction

Suppose $P(n : \mathbb{N})$ is a predicate for which P(0) is true. Suppose also that, for any n, the truth of P(n) implies the truth of P(n+1). In this case, we can conclude that P(n) is true for all natural numbers n. This principle is known as **induction**.

Theorem 1.2.1 (Induction²).

$$(P(0) \land (\forall n : \mathbb{N} \bullet P(n) \Rightarrow P(n+1))) \Rightarrow (\forall n : \mathbb{N} \bullet P(n))$$

Proof. Suppose $\exists m : \mathbb{N} \bullet \neg P(m)$. Then let $m = \min\{n : \mathbb{N} \mid \neg P(n)\}$. P(0) is true by assumption, so $m \ge 1$, and m = n + 1 for some $n : \mathbb{N}$. n < m, so P(n) must be true. However, $P(n) \Rightarrow P(n+1) = P(m)$, contradicting $\neg P(m)$.³

Therefore, we may prove a proposition $\forall n : \mathbb{N} \bullet P(n)$ by proving P(0)(which is usually trivial) and the inductive step $\forall n : \mathbb{N} \bullet P(n) \Rightarrow P(n+1)$.

The principle of **strong induction** allows us to make a stronger assumption in the inductive step: we seek to prove P(n), on the assumption that P(k) is true for all natural numbers k < n.

Corollary 1.2.2 (Strong⁴ Induction).

$$\left(\forall n : \mathbb{N} \bullet \left(\forall k : \mathbb{N} \mid k < n \bullet P(k)\right) \Rightarrow P(n)\right) \Rightarrow \left(\forall n : \mathbb{N} \bullet P(n)\right)$$

Proof. Define $Q(n : \mathbb{N}) = (\forall k : \mathbb{N} \mid k < n \bullet P(k))$. Q(0) is a vacuous truth; also, $Q(n) \Rightarrow P(n)$ is equivalent to $Q(n) \Rightarrow Q(n+1)$. Therefore, the principle of induction applies to Q(n), and so the result follows from Theorem 1.2.1.

An "inductive proof" is one which makes use of either of these principles. Such a proof is "by induction on n" (or "by strong induction on n").

An "inductive definition" of a function $f : \mathbb{N} \to X$ is one for which the predicate "f is defined at $n : \mathbb{N}$ " can be proven by induction; e.g. f(0) is defined, and the definition of f(n) depends on values of f(k) for k < n. Such a function f is "defined inductively".

²Literally, "If P(0) is true, and for all n, P(n) implies P(n+1), then for all n, P(n) is true." Metaphorically, if we can step onto the first rung of a ladder, and climb from each rung to the next, then we can reach any rung.

 $^{^{3}}$ Metaphorically, if there is an unreachable rung, there is a lowest one, in which case we can reach the one below it. But then we can climb one more rung, contradicting its unreachability.

⁴The corollary is ostensibly *weaker*, as the premise is stronger.

1.3 Binomial Coefficients

Definition 1.3.1. For $n : \mathbb{N}$, $n! = \prod_{k=1}^{n} k$ is the **factorial** of n.

Definition 1.3.2.

- 1. If X is a set, and $k : \mathbb{N}, X^{(k)} = \{ S : \mathbb{P} X \mid \#S = k \}.$
- 2. $C : \mathbb{N}^2 \to \mathbb{N}$ is given by $C(n,k) = \#\{1,\ldots n\}^{(k)}$. We write $\binom{n}{k}$ to mean C(n,k). Values of C are **binomial coefficients**.

Note that by symmetry,⁵ each element a : X appears in the same number of sets $S : X^{(k)}$; i.e. $\forall a, b : X \bullet \# \{ S : X^{(k)} \mid a \in S \} = \# \{ S : X^{(k)} \mid b \in S \}.$

Proposition 1.3.3. $\forall n, k : \mathbb{N}$,

1.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

2. $\binom{n}{0} = \binom{n}{n} = 1$, $\binom{n}{1} = n$, and if $k > n$, then $\binom{n}{k} = 0$.
3. $\binom{n}{k} = \binom{n}{n-k}$.
4. $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.
5. $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

Proof.

- 1. If the first k elements in an ordering of the set n determine a subset of cardinality k, then there are k! possible orderings of the first k elements, and (n-k)! orderings of the remaining elements; hence, each subset is given by k!(n-k)! of the n! orderings of the set n.
- 2. Follows immediately from (1), and the fact that $\{1, \ldots n\}$ has no subsets of cardinality k > n.

⁵I.e. Sym(X) acts **transitively** on X and $X^{(k)}$.

⁶Hence, "Pascal's triangle" computes the binomial coefficients.

3. Follows immediately from (1).

4.
$$\frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-k-1)!} = \frac{(n-k)n! + (k+1)n!}{(k+1)!(n-k)!} = \frac{(n+1)!}{(k+1)!(n-k)!}$$

5. Let $N = \{1, \dots n\}$, then $\{k : \mathbb{N} \mid k \leq n \bullet N^{(k)}\}$ is a partition of $\mathbb{P}N$,

so
$$2^n = \# \mathbb{P} N = \# \bigcup_{k=0}^n N^{(k)} = \sum_{k=0}^n \# N^{(k)} = \sum_{k=0}^n \binom{n}{k}.$$

Theorem 1.3.4 (The Binomial Theorem). $\forall n : \mathbb{N}$, the polynomial

$$(X+Y)^n = \sum_{k=0}^n \binom{n}{k} X^k Y^{n-k}$$

Proof. By induction on n; n = 0 is trivial. Then, $(X + Y)^{n+1} = (X + Y)(X + Y)^n$

$$= (X + Y) \sum_{k=0}^{n} \binom{n}{k} X^{k} Y^{n-k}$$

$$= \left[\sum_{k=0}^{n} \binom{n}{k} X^{k+1} Y^{n-k} \right] + \left[\sum_{k=0}^{n} \binom{n}{k} X^{k} Y^{n+1-k} \right]$$

$$= \binom{n}{0} Y^{n+1} + \left[\sum_{k=1}^{n} \binom{n}{k-1} + \binom{n}{k} X^{k} Y^{n+1-k} \right] + \binom{n}{n} X^{n+1}$$

$$= \binom{n+1}{0} Y^{n+1} + \left[\sum_{k=1}^{n} \binom{n+1}{k} X^{k} Y^{n+1-k} \right] + \binom{n+1}{n+1} X^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n}{k} X^{k} Y^{n+1-k}.$$

1.4 The Inclusion-Exclusion Principle

Lemma 1.4.1. $\forall n : \mathbb{N} \bullet \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} = 1.$

Proof. By Theorem 1.3.4, $\sum_{k=0}^{n} (-1)^{k} \binom{n}{k} = (1+(-1))^{n} = 0.$ Therefore, $1 = (-1)^{0} \binom{n}{0} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} - \sum_{k=1}^{n} (-1)^{k} \binom{n}{k} = 0 + \sum_{k=0}^{n} (-1)^{k+1} \binom{n}{k}.$

Theorem 1.4.2 (Inclusion-Exclusion Principle). If X is a finite set, and $S : \mathbb{PP}X$, then

$$\# \bigcup S = \sum_{k=1}^{\#S} (-1)^{k+1} \sum_{B:S^{(k)}} \# \bigcap B$$

Equivalently, for $A_1, \ldots A_n : \mathbb{P} X$,

$$\# \bigcup_{i=1}^{n} A_{i} = \sum_{J:\mathbb{P}\{1,\dots,n\}} (-1)^{1+\#J} \# \bigcap_{i:J} A_{i}$$

Equivalently,

$$#(A_1 \cup \cdots A_n) = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n} #(A_{i_1} \cap \dots A_{i_k})$$

Proof. Given $x : \bigcup S$, suppose $x \in A$ for exactly m of the A : S.

By symmetry, $x \in \bigcap B$ for exactly $\binom{m}{k}$ of the $B : S^{(k)}$. Also, the terms for k > m are all 0. Hence, x is counted exactly $\sum_{k=1}^{m} (-1)^{k+1} \binom{m}{k} = 1$ time by Lemma 1.4.1.

In particular, e.g. $\#(X \cup Y) = \#X + \#Y - \#(X \cap Y).$

1.5 Irrational and Transcendental Numbers

Definition 1.5.1. An *irrational number* is a number which is not rational; *i.e.* it is not in \mathbb{Q} .

Proposition 1.5.2. e is irrational.

Proof. Suppose $e = \frac{p}{q} \in \mathbb{Q}$ with $q \ge 1$.

$$\mathbb{Z} \ni p(q-1)! = q! e = q! \sum_{n=0}^{\infty} \frac{1}{n!} = \left[\sum_{n=1}^{q} \frac{q!}{n!}\right] + \left[\sum_{n=q+1}^{\infty} \frac{q!}{n!}\right]$$

where the first term is an integer.⁷ Therefore, the second term is an integer.

However, for $k \ge 1$, $\frac{q!}{(q+k)!} \le \frac{1}{(q+1)^k}$ with strict inequality for k > 1, so

$$0 < \sum_{n=q+1}^{\infty} \frac{q!}{n!} = \sum_{k=1}^{\infty} \frac{q!}{(q+k)!} < \sum_{k=1}^{\infty} \frac{1}{(q+1)^k} = \frac{1}{q} \le 1$$

and hence this term is not an integer; a contradiction.

Definition 1.5.3. For $R : \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\},\$

- 1. A **monomial** in variables $X_1, \ldots X_m$ is of the form $aX_1^{k_1} \cdots X_m^{k_m}$ for $a: R, k_1, \ldots k_m : \mathbb{N}.^8$
- 2. A polynomial in one variable X is a sum of monomials in X.

In general, a polynomial f in one variable X has $f = \sum_{k=0}^{n} a_k X^k$ for $a_1, \ldots, a_n : R \mid a_n \neq 0$, or f = 0.

- 3. If f is a polynomial in one variable, deg f = n is the **degree**⁹ of f, and deg $0 = -\infty$.¹⁰
- 4. R[X] is the set of all polynomials in X with coefficients in R.
- 5. For f : R(X), $z : \mathbb{C}$ is a **root** of f if f(z) = 0.

⁷For $n \leq q$, q! is a multiple of n!, so the first term is a sum of integers.

⁸For convenience, we will take X^0 to be 1 even when X = 0.

⁹More generally, the degree of a polynomial in *m* variables is the largest of the $\sum k_i$.

 $^{^{10}-\}infty$ is not a number, but $-\infty < n$ for any number n.

Proposition 1.5.4. For $z : \mathbb{C}$, z is a root of a non-zero polynomial in $\mathbb{Z}[X]$ iff it is a root of a non-zero polynomial in $\mathbb{Q}[X]$; i.e.

$$\left(\exists f: \mathbb{Z}[X] \setminus \{0\} \bullet f(z) = 0\right) \Leftrightarrow \left(\exists g: \mathbb{Q}[X] \setminus \{0\} \bullet g(z) = 0\right)$$

Proof. Given $g = \sum_{k=0}^{n} \frac{p_k}{q_k} X^k$, let $f = \left[\prod_{k=0}^{n} q_k\right] \cdot g$. Then $f \neq 0, f \in \mathbb{Z}[X]$, and f(z) = 0.

The converse is trivial.

Definition 1.5.5.

- 1. $z : \mathbb{C}$ is an algebraic number if it is a root of a non-zero polynomial in $\mathbb{Z}[X]$.¹¹
- 2. $z : \mathbb{C}$ is a **transcendental number** if it is not algebraic.
- 3. A is the set of algebraic numbers.

Proposition 1.5.6. Every rational number is algebraic.

Proof. Given $a : \mathbb{Q}$, a is a root of $(X - a) \in \mathbb{Q}[X]$.

Theorem 1.5.7. Liouville's constant $x = \sum_{n=1}^{\infty} 10^{-n!}$ is transcendental.

Proof. Suppose $\sum_{k=0}^{d} a_k x^k = 0$ for some $a_1, \ldots a_d : \mathbb{Z} \mid a_d \neq 0$. For $n : \mathbb{N}_+$, let

$$A_n = \sum_{i=1}^{n-1} 10^{-i!}, B_n = 10^{-n!}, \text{ and } C_n = \sum_{i=n+1}^{\infty} 10^{-i!}$$

so that $\forall n : \mathbb{N}_+$,

- 1. $A_n + B_n + C_n = x$.
- 2. A_n is an integer multiple of B_n , and if n > 1, $B_n < A_n < 1$.
- 3. If $n \ge d$, then $C_n < 2 \cdot 10^{-(n+1)!} < 2B_n^d \cdot 10^{n!d-(n+1)!} < B_n^d$.

¹¹Or equivalently, $\mathbb{Q}[X]$.

 $(A_n + B_n + C_n)^d$ is a sum of terms of the form $A_n^p B_n^q C_n^r$, where p, q, r: $\mathbb{N} \mid p + q + r = d$.¹²

- One term is B_n^d ,
- Each term with r > 0 has $A_n^p B_n^q C_n^r < C_n$,
- The remaining terms are integer multiples of $A_n B_n^{d-1} = B_n^d \cdot 10^{n! (n-1)!}$.

Similarly, for $k : \mathbb{N} \mid k < d$, $(A_n + B_n + C_n)^k$ is a sum of terms each of which is either an integer multiple¹³ of $B_n^{d-1} = B_n^d \cdot 10^{n!}$, or less than C_n .

Hence, for sufficiently large n,

$$0 = 10^{n!d} \sum_{i=0}^{d} a_i x^i = \frac{1}{B_n^d} \sum_{i=0}^{d} a_i (A_n + B_n + C_n)^i = S_n \cdot 10^{n! - (n-1)!} + a_d + \epsilon_n$$

where $S_n \in \mathbb{Z}$. It follows that $a_d + \epsilon_n$ is an integer multiple of $10^{n!-(n-1)!}$.

 $|\epsilon_n| < MT \cdot 2 \cdot 10^{n!d-(n+1)!}$, where $M = \max_{0 \le k \le d} |a_k|$ and $T = 3^d(d+1)$ is an upper bound for the number of terms in the expansion. Therefore, for sufficiently large n, $|\epsilon_n| < |a_d| < \frac{1}{2} \cdot 10^{n!-(n-1)!}$, and so $a_d + \epsilon_n$ is not an integer multiple of $10^{n!-(n-1)!}$, a contradiction.

A similar proof shows that for $x : \mathbb{R}$, if

$$\forall n : \mathbb{N} \bullet \exists \frac{p}{q} : \mathbb{Q} \bullet 0 < \left| x - \frac{p}{q} \right| < \frac{1}{q^n}$$

then x is transcendental.¹⁴

1.6 Countability

Definition 1.6.1.

- 1. A set S is countable if $\exists f : \mathbb{N} \twoheadrightarrow S.^{15}$
- 2. S is uncountable if S is not countable.

Equivalently, $\exists f : S \rightarrow \mathbb{N}$. Equivalently, either S is finite or $\exists f : \mathbb{N} \rightarrow S$. Note that for X countable, if $\exists f : X \rightarrow Y$ or $\exists f' : Y \rightarrow X$ then Y is countable.

 $^{^{12}}$ E.g. by applying Theorem 1.3.4 twice.

¹³Since for k < d, B_n^k is an integer multiple of B_n^{d-1} .

¹⁴Such an x is a **Liouville number**, and this result is *Liouville's theorem on diophantine approximation*.

¹⁵I.e. S can be enumerated, or "counted", by the natural numbers, although the list may be infinitely long.

Theorem 1.6.2.

- 1. \mathbb{N}^2 is countable.
- 2. If A_1, \ldots, A_n are countable, then $A_1 \times \cdots \times A_n$ is countable.
- 3. A countable union of countable sets is countable.

Proof.

1. Let $f : \mathbb{N} \to \mathbb{N}^2$ be defined inductively by f(0) = (0, 0), and

$$f(k) = (a, b) \Rightarrow f(k+1) = \begin{cases} (a+1, b-1) & (b>0)\\ (0, a+1) & (b=0) \end{cases}$$

Then $\forall (a, b) : \mathbb{N}^2 \bullet f\left(\left[\sum_{j=1}^{a+b+1} j\right] + a\right) = (a, b)$, hence f is surjective.¹⁶

2. By strong induction on n; n = 0, 1 are trivial, and n = 2 follows immediately from (1).

For n > 2, given A_1, \ldots, A_{n+1} countable, $A_1 \times \cdots \times A_n$ is countable by the inductive assumption, and hence $A_1 \times \cdots \times A_{n+1} = (A_1 \times \cdots \times A_n) \times A_{n+1}$ is countable by the inductive assumption.

3. Let $(A_i)_{i:I}$ be a countable family of countable sets, with $c_I : I \to \mathbb{N}$ and for i : I, $f_i : A_i \to \mathbb{N}$. Define $\pi : \bigcup_{i:I} A_i \to I$ so that $a \in A_{\pi(a)}$, and $F : \bigcup_{i:I} A_i \to \mathbb{N}^2$ by $F(a) = (c_I \pi(a), f_{\pi(a)}(a))$.

Given $a, b : \bigcup_{i:I} A_i$, if F(a) = F(b) then since c_I is an injection, $\pi(a) = \pi(b)$, and so since $f_{\pi(a)} = f_{\pi(b)}$ is an injection, a = b. Hence F is injective.

The result follows by (1).

г		
L		
L		
L		
ь.		

Corollary 1.6.3.

- 1. \mathbb{Q} is countable.
- 2. $\mathbb{Q}[X]$ is countable.
- 3. A is countable.

¹⁶I.e. "rotate \mathbb{N}^2 clockwise by $\frac{3\pi}{4}$ and read it like a book".

Proof.

- 1. Define $f : \mathbb{Q} \to \mathbb{N}^2$ by $f(\frac{p}{q}) = (p, q)$.
- 2. For $n : \mathbb{N}$, $P_n = \{f : \mathbb{Q}[X] \mid \deg f \leq n\}$ is countable,¹⁷ hence $\mathbb{Q}[X] = \bigcup_{n:\mathbb{N}} P_n$ is a countable union of countable sets.
- 3. For $f : \mathbb{Q}[X] \setminus \{0\}$, $R_f = \{z : \mathbb{C} \mid f(z) = 0\}$ is finite,¹⁸ hence $\mathbb{A} = \bigcup_{f:\mathbb{O}[X]\setminus\{0\}} R_f$ is a countable union of finite sets.

Theorem 1.6.4. \mathbb{R} is uncountable.

Proof (Cantor's Diagonal Argument). Given $f : \mathbb{N} \to \mathbb{R}$,

for
$$i : \mathbb{N}$$
 let $c_i = \begin{cases} 4 & \text{if the } i \text{th decimal place of } f(i) \text{ is } 5, \\ 5 & \text{otherwise.} \end{cases}$

and define $x : \mathbb{R}$ by $x = c_0 . c_1 c_2 \cdots \forall i : \mathbb{N} \bullet f(i) \neq x$, as they differ in the *i*th decimal place. Therefore, f is not surjective.

Corollary 1.6.5. There are uncountably many transcendental numbers.

Proof. Otherwise, $\mathbb{R} = (\mathbb{R} \cap \mathbb{A}) \cup (\mathbb{R} \setminus \mathbb{A})$ is a finite union of countable sets, contradicting Proposition 1.6.2.3 or Theorem 1.6.4.

Theorem 1.6.6 (Cantor's Theorem). For any set X, $\nexists f : X \twoheadrightarrow \mathbb{P} X$.

Proof. Given $f: X \to \mathbb{P} X$, let $S = \{x : X \mid x \notin f(x)\}$. Note that $S \in \mathbb{P} X$. By construction, $\forall x : X, x \in f(x) \Leftrightarrow x \notin S$. Therefore, $\nexists x : X \bullet f(x) = S$, and f is not surjective.

Hence, $\#X < \#\mathbb{P}X < \#\mathbb{P}\mathbb{P}X < \dots$

Corollary 1.6.7. \mathbb{PN} is uncountable.

Proof. Follows immediately from Theorem 1.6.6.

 \square

In particular, if we define $X_0 = \mathbb{N}$ and $X_{n+1} = \bigcup_{k:\mathbb{N}} \mathbb{P}^k X_n$, then $\forall n, k : \mathbb{N} \bullet \# X_{n+1} > \# \mathbb{P}^k X_n$.

 $^{{}^{17}}P_n$ has a natural injection to \mathbb{Q}^{n+1} , which is countable by (1) and Theorem 1.6.2.2.

 $^{^{18}\#}R_f \leq \deg f$. E.g. see Theorem 3.9.6.

2 Numbers

2.1 Euclid's Algorithm

Definition 2.1.1. For $d, n : \mathbb{Z}, d \mid n \text{ if } \exists k : \mathbb{Z} \bullet n = kd$.

Proposition 2.1.2. For $a, b, c : \mathbb{Z}$,

1. $a \mid 0, 1 \mid a, a \mid a, and 0 \mid a \Leftrightarrow a = 0.$ 2. $(a \mid b \land a \mid c) \Rightarrow a \mid (b + c).$ 3. $a \mid b \Rightarrow a \mid bc.$ 4. $(a \mid b \land b \mid c) \Rightarrow a \mid c.$ 5. $a \mid b \Rightarrow |a| \leqslant |b|.$ 6. $(a \mid b \land b \mid a) \Rightarrow a = \pm b.$

Proof.

Lemma 2.1.3. $\forall n, k : \mathbb{Z} \mid k > 0 \bullet \exists ! q, r : \mathbb{Z} \mid 0 \leq r < k \bullet n = qk + r.$

Proof.

1. Existence: when n = 0, q = r = 0 is a solution.

Suppose n = qk + r. Then n + 1 = qk + r + 1. If r < k - 1, then n + 1 = qk + (r + 1) is a solution. Otherwise r = k - 1 and so n = (q + 1)k + 0 is a solution.

By induction on n, the result holds for $n \ge 0$. For n < 0, write -n = qk + r. If r = 0 then n = (-q)k + 0, otherwise n = (-1 - q)k + (k - r).

2. Uniqueness: suppose qk + r = q'k + r', $0 \leq r, r' < k$. (q - q')k + (r - r') = 0 and so k | (r - r'). It follows that r - r' = 0 and then q = q', r = r'.

This is division with remainders.

Definition 2.1.4. For $a, b, c : \mathbb{Z}$, c is a **highest common factor**¹⁹ of a and b if:

1. $c \mid a \land c \mid b^{20}$ 2. $\forall d : \mathbb{N} \bullet (d \mid a \land d \mid b) \Rightarrow d \mid c^{21}$

Proposition 2.1.5.

- 1. 0 is a highest common factor of 0 and 0.
- 2. $\forall a : \mathbb{Z}$, a is a highest common factor of a and 0.

Proof.

1.
$$0 \mid 0 \land 0 \mid 0 \land \forall d : \mathbb{Z} \bullet (d \mid 0 \land d \mid 0) \Rightarrow d \mid 0.$$

2. $a \mid a \land a \mid 0 \land \forall d : \mathbb{Z} \bullet (d \mid a \land d \mid 0) \Rightarrow d \mid a.$

Proposition 2.1.6. $a, b : \mathbb{Z}$ have at most one highest common factor (up to a change of sign).

Proof. Suppose c and d are both highest common factors of a and b. Then $c \mid d$ and $d \mid c$, so c = kd for some natural number k, and d = k'c for some natural number k'. Hence, c = kk'c, so either $k = k' = \pm 1$ and $c = \pm d$, or c = d = 0.

 $^{^{19}\}mathrm{The}$ highest common factor is unique, but we cannot define it to be unique.

 $^{^{20}\,^{\}rm ``A}$ highest common factor divides both numbers,"

 $^{^{21}\, ``}and$ any other common factor divides it."

Theorem 2.1.7. $\forall a, b : \mathbb{N}_+$, a and b have a highest common factor.

Proof (Euclid's Algorithm). Wlog $a \ge b$.

Let $r_0 = a$ and $r_1 = b$, and for $i \ge 2$, define $q_i, r_i : \mathbb{N}$ such that $r_i < r_{i-1}$ and $r_{i-2} = q_i r_{i-1} + r_i$, so long as $r_{i-1}, r_{i-2} > 0$.

Since r_i is a decreasing sequence of natural numbers, $\exists n : \mathbb{N} \bullet r_n = 0$ (and thus r_{n+1} is not defined). Let $c = r_{n-1}$. Claim: $c \mid a \land c \mid b$.

Proof of claim: Since $r_n = 0$, $c \mid r_n \wedge c \mid r_{n-1}$.

Also, since $r_{i+2} = r_i - q_i r_{i+1}$ for $i \leq n-2$, $(c \mid r_{i+2} \wedge c \mid r_{i+1}) \Rightarrow c \mid r_i$. By backwards strong induction on *i*, it follows that $\forall i : \mathbb{N} \mid i \leq n \bullet c \mid r_i$, and hence $c \mid a \wedge c \mid b$. Claim: If $d \mid a \land d \mid b$ for some natural number d, then $d \mid c$.

Proof of claim: By assumption, $d \mid r_0 \land d \mid r_1$.

Also, since $r_{i+2} = r_i - q_i r_{i+1}$ for $i \leq 2$, $(d \mid r_i \wedge d \mid r_{i+1}) \Rightarrow d \mid r_{i+2}$. By strong induction on i, it follows that $\forall i : \mathbb{N} \mid i \leq n \bullet d \mid r_i$, and hence

 $d \mid c \text{ (as } c = r_{n-1}\text{).}$

Therefore, c is a highest common factor of a and b.²²

Corollary 2.1.8. $\forall a, b : \mathbb{Z}$ there is a unique non-negative highest common factor of a and b.

Proof. We already know the result for $a, b \ge 0$. Then, it is enough that a highest common factor of |a| and |b| is also a highest common factor of a and b. Uniqueness follows from Proposition 2.1.6.

Definition 2.1.9. For $a, b : \mathbb{Z}$,

- 1. HCF(a) = |a|.
- 2. HCF(a, b) is the (non-negative) highest common factor of a and b.
- 3. For $n \ge 2$, $a_i : \mathbb{Z}$, $\text{HCF}(a_1, \dots, a_{n+1}) = \text{HCF}(\text{HCF}(a_1, \dots, a_n), a_{n+1})$.

 $HCF(a_1, \ldots, a_n)$ is a true generalisation of HCF(a, b):

Proposition 2.1.10.

1. $\forall i : \mathbb{N} \mid 1 \leq i \leq n \bullet \mathrm{HCF}(a_1, \ldots, a_n) \mid a_i$.

²²Note that this proof is *constructive*, as it provides an algorithm for computing c. It is easy to see that the algorithm will terminate in at most b steps; in fact, the worst-case complexity of the algorithm is $O(\log b)$, when a, b are consecutive Fibonacci numbers.

2. $\forall d : \mathbb{Z} \bullet (\forall i : \mathbb{N} \mid 1 \leq i \leq n \bullet d \mid a_i) \Rightarrow d \mid \text{HCF}(a_1, \dots a_n).$

Proof. By induction on n. n = 1 is trivial, and n = 2 is Definition 2.1.4.2. Let $h = \text{HCF}(a_1, \ldots a_n)$, and $h' = \text{HCF}(a_1, \ldots a_{n+1})$. Suppose the result holds for n.

- 1. $h' | h \wedge h' | a_{n+1}$ by Definition 2.1.9. Then, for $1 \leq i \leq n, h' | h | a_i$ by the inductive assumption.
- 2. Given $d \mid a_i$ for $1 \leq i \leq n+1$, $d \mid h$ by the inductive assumption, and $d \mid a_{n+1}$, hence by Definition 2.1.4, $d \mid h'$.

Definition 2.1.11.

- 1. $a, b : \mathbb{Z}$ are coprime (or relatively prime) if HCF(a, b) = 1.
- 2. $S : \mathbb{PZ}$ is coprime if $\forall a, b : S \mid a \neq b, a, b$ are coprime.²³

Corollary 2.1.12. $\forall a, b : \mathbb{Z} \bullet \exists x, y : \mathbb{Z} \bullet ax + by = HCF(a, b).$

Proof (Extended Euclidean Algorithm). If a or b is 0, the result is trivial. Wlog a, b > 0.

Let r_i , *n* be defined as in the proof of Theorem 2.1.7. By definition, $r_0 = a \cdot 1 + b \cdot 0$ and $r_1 = a \cdot 0 + b \cdot 1$.

If $r_{i-2} = ax + by$ and $r_{i-1} = ax' + by'$ for some natural number $i \ge 2$ and integers x, y, x', y', then $r_i = r_{i-2} - q_k r_{i-1} = a(x - q_k x') + b(y - q_k y')$.

By strong induction on *i*, it follows that $HCF(a, b) = r_{n-1}$ can be written in this form.²⁴

Theorem 2.1.13. ²⁵

$$\forall n : \mathbb{N}_+ \bullet \forall a_1, \dots a_n : \mathbb{Z} \bullet \exists x_1, \dots x_n : \mathbb{Z} \bullet \sum_{j=1}^n a_j x_j = \mathrm{HCF}(a_i)$$

²³This is not the same as saying HCF(S) = 1; besides not having defined HCF for infinite sets, HCF(2, 3, 6) = 1 but HCF(2, 6) = 2.

²⁴Again, the proof is constructive.

²⁵This is a direct generalisation of Corollary 2.1.12.

Proof. By induction on n. The result for n = 1 is trivial, and the result for n = 2 is Corollary 2.1.12.

Suppose that $HCF(a_1, \ldots a_n) = \sum_{i=1}^n a_i x_i$. By Corollary 2.1.12,

 $\exists x, y : \mathbb{Z} \bullet \mathrm{HCF}(\mathrm{HCF}(a_1, \dots, a_n), a_{n+1}) = \mathrm{HCF}(a_1, \dots, a_n) \cdot x + a_{n+1}y$

And so

$$\mathrm{HCF}(a_1,\ldots a_{n+1}) = \left(\sum_{i=1}^n a_i(xx_i)\right) + a_{n+1}y$$

2.2 Integer Linear Equations

An integer linear equation in one variable $x : \mathbb{Z}$ is of the form ax = b for $a, b : \mathbb{Z} \mid a \neq 0$. This equation has a solution iff $a \mid b$, as this is precisely Definition 2.1.1. The solution is necessarily unique.²⁶

We can give a similar condition for an integer linear equation ax + by = cin two variables $x, y : \mathbb{Z}$, with constants $a, b, c : \mathbb{Z} \mid a, b \neq 0$, to have a solution.

Corollary 2.2.1.

$$\forall a, b, c : \mathbb{Z} \mid a, b \neq 0 \bullet (\exists x, y : \mathbb{Z} \bullet ax + by = c) \Leftrightarrow \mathrm{HCF}(a, b) \mid c$$

Proof. Negating x or y if necessary, wlog a, b > 0.

Suppose $\exists x, y : \mathbb{Z} \bullet c = ax + by$. Since $HCF(a, b) \mid a \land HCF(a, b) \mid b$, it follows that $HCF(a, b) \mid c$.

Conversely, suppose $c = k \cdot \text{HCF}(a, b)$ for some $k : \mathbb{Z}$. Then by Corollary 2.1.12, $\exists x, y : \mathbb{Z} \bullet a(kx) + b(ky) = k \cdot \text{HCF}(a, b) = c.^{27}$

Note that a solution x, y cannot be unique, as a(x+kb) + b(y-ka) = c is a distinct solution $\forall k : \mathbb{Z}$.

A similar result can be shown for integer linear equations in any number of variables.

Theorem 2.2.2. ²⁸ $\forall n : \mathbb{N}_+ \bullet \forall a_1, \ldots a_n, b : \mathbb{Z} \mid a_i \neq 0 \bullet$

$$\left(\exists x_1, \dots, x_n : \mathbb{Z} \bullet \sum_{j=1}^n a_j x_j = b\right) \Leftrightarrow \operatorname{HCF}(a_i) \mid b$$

²⁶Because *a* has a multiplicative inverse $\frac{1}{a} \in \mathbb{Q}$.

²⁷And when this solution exists, we have an algorithm to construct it.

 $^{^{28}}$ "For all *n*, an integer linear equation in *n* variables has a solution iff the HCF of the coefficients divides the constant term."

Proof. Suppose the x_i exist. By Proposition 2.1.10.1, $\forall j \bullet \text{HCF}(a_i) \mid a_j x_j$, and so it follows that $\text{HCF}(a_i) \mid b$.

Conversely, suppose $b = k \cdot \text{HCF}(a_i)$ for some $k : \mathbb{Z}$. Then by Theorem 2.1.13, $\exists x_i \bullet \sum_{j=1}^n a_j(kx_j) = b$.

2.3 Congruence Modulo n

Definition 2.3.1. For $a, b : \mathbb{Z}, n : \mathbb{N}_+, a \equiv b \pmod{n}$ if $n \mid (b - a)$.

a and b are said to be "congruent modulo n."

Proposition 2.3.2. $\equiv \pmod{n}$ is an equivalence relation.

Proof. $\forall a, b, c : \mathbb{Z}$,

- 1. Referivity: $n \mid (a a)$.
- 2. Symmetry: $n | (b a) \Rightarrow n | (a b)$.
- 3. Transitivity: $(n | (b-a) \land n | (c-b)) \Rightarrow n | ((c-b) (a-b)).$

Definition 2.3.3. \mathbb{Z}_n is the set of equivalence classes for $\equiv \pmod{n}$.

These equivalence classes are all of the form $[a]_n = \{k : \mathbb{Z} \bullet a + kn\}$. By Lemma 2.1.3, $\mathbb{Z}_n = \{[0]_n, \dots, [n-1]_n\}$, and $\#\mathbb{Z}_n = n$.

Proposition 2.3.4. For $a, b, c, d : \mathbb{Z}$, $n : \mathbb{N}_+$, if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then:

- 1. $a + c \equiv b + d \pmod{n}$.
- 2. $ac \equiv bd \pmod{n}$.
- 3. $\forall k : \mathbb{N}_+ \bullet a^k \equiv b^k \pmod{n}$.

Proof. Let b = a + pn, d = c + qn for $p, q : \mathbb{Z}$.

- 1. b + d = a + c + (p + q)n.
- 2. bd = ac + (pc + qa + pqn)n.

3. By Theorem 1.3.4,
$$b^k = (a + pn)^k = a^k + \left(\sum_{i=0}^{k-1} \binom{k}{i} a^i p^{k-i} n^{k-i-1}\right) n.$$

Definition 2.3.5. $\forall [a]_n, [b]_n : \mathbb{Z}_n, k : \mathbb{N}_+,$

- 1. $[a]_n + [b]_n = [a+b]_n$.
- 2. $[a]_n \cdot [b]_n = [ab]_n$.
- 3. $[a]_{n}^{k} = [a^{k}]_{n}$

These are well-defined²⁹ by Proposition 2.3.4. Associativity, commutativity and distributivity follow immediately from the same properties in \mathbb{Z} .³⁰

Where it is clearer, we will write $a : \mathbb{Z}_n$ to mean $[a]_n : \mathbb{Z}_n$ and $a : \mathbb{Z}$ interchangeably.

Proposition 2.3.6. if $a \equiv b \pmod{n}$, then HCF(a, n) = HCF(b, n).³¹

Proof. Let h = HCF(a, n), h' = HCF(b, n) and b = a + kn. $h \mid a \land h \mid n$, so $h \mid (a + kn)$. Similarly, $h' \mid a$. $(h \mid b \land h \mid n) \Rightarrow h \mid h'$, and $(h' \mid a \land h' \mid n) \Rightarrow h' \mid h$. Therefore h = h'.

It follows that for $[a]_n : \mathbb{Z}_n$, HCF(a, n) is well-defined.

Definition 2.3.7. $\mathbb{Z}_{n}^{*} = \{ a : \mathbb{Z}_{n} \mid \text{HCF}(a, n) = 1 \}.$

Proposition 2.3.8. For $a : \mathbb{Z}_n$,

1. $ab \equiv 1 \pmod{n}$ has a unique solution $b : \mathbb{Z}_n^*$ iff $a \in \mathbb{Z}_n^*$.

2. $ab \equiv 0 \pmod{n}$ has a solution $b \not\equiv 0 \pmod{n}$ iff $a \notin \mathbb{Z}_n^*$.

Proof.

1. By Corollary 2.1.12, a solution exists iff HCF(a, n) = 1.

If $ab_1 \equiv ab_2 \equiv 1 \pmod{n}$ then $b_1 \equiv ab_2b_1 \equiv ab_1b_2 \equiv b_2 \pmod{n}$, so the solution is unique modulo n.

2. Let $f(x : \mathbb{Z}_n) = ax$. By Corollary 2.1.12, $1 \notin \operatorname{ran} f$, and so f is not surjective. Since \mathbb{Z}_n is finite, f is not injective, so $\exists x, y : \mathbb{Z}_n \mid x \neq y \bullet$ ax = ay. Hence, $a(y - x) \equiv 0 \pmod{n}$ but $y - x \not\equiv 0 \pmod{n}$. Conversely, suppose $ab \equiv 0 \pmod{n}$, with $b \not\equiv 0 \pmod{n}$. If $a \in \mathbb{Z}_n^*$ then $\exists p : \mathbb{Z}_n \bullet ap \equiv 1 \pmod{n}$, but then $p \cdot 0 \equiv pab \equiv b \not\equiv 0 \pmod{n}$.

Therefore $a \notin \mathbb{Z}_n^*$.

²⁹I.e. we get the same results even if we choose different representatives b, d from the equivalence classes $[a]_n, [c]_n$.

³⁰Therefore, \mathbb{Z}_n is a ring.

³¹In particular, a, n are coprime iff b, n are coprime.

2.4 Prime Numbers

Definition 2.4.1.

1. $p : \mathbb{N} \mid p > 1$ is a **prime number** (or a **prime**) if

$$\forall a, b : \mathbb{Z} \bullet p \mid ab \Rightarrow (p \mid a \lor p \mid b)$$

2. $n : \mathbb{N} \mid n > 1$ is a **composite number** if n is not a prime number.

We also say "p is prime" or "n is composite".

Lemma 2.4.2. If $p : \mathbb{N}$ is prime, then $\forall d : \mathbb{N} \bullet d \mid p \Leftrightarrow (d = 1 \lor d = p)$.

Proof. Suppose $d \mid p$ but $d \neq 1, p$. By Proposition 2.1.2.5, 1 < d < p and so p = kd with 1 < k < p. Now $p \mid kd \Rightarrow (p \mid k \lor p \mid d)$, contradicting k, d < p. The converse is trivial.

Proposition 2.4.3. Distinct prime numbers are coprime.

Proof. Let $p \neq q$ be primes, h = HCF(p, q). $h \mid p \Rightarrow (h = 1 \lor h = p)$, and $h \mid q \Rightarrow (h = 1 \lor h = q)$. Therefore h = 1.

Proposition 2.4.4. If p is a prime number, then

$$\forall n : \mathbb{N}_{+} \bullet \forall a_{1}, \dots a_{N} : \mathbb{Z} \bullet \left(p \mid \prod_{j=1}^{N} a_{j} \Rightarrow \exists i : \mathbb{N} \mid 1 \leqslant i \leqslant N \bullet p \mid a_{i} \right)$$

Proof. By induction on N. N = 1 is trivial, N = 2 is Definition 2.4.1. Suppose $p \mid \prod_{j=1}^{N+1} a_j$. By Definition 2.4.1, $\left(p \mid \prod_{j=1}^N a_j\right) \lor p \mid a_{N+1}$. \Box

Corollary 2.4.5. $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}.$

Proof. Follows immediately from Lemma 2.4.2.

Therefore, \mathbb{Z}_p is a field.

Proposition 2.4.6. Every natural number n > 1 has a prime factor.

Proof. Let $F = \{k : \mathbb{N} \mid k \mid n\}$. $F \supseteq \{1\}$, and so let $p = \min(F \setminus \{1\})$. $\forall d : \mathbb{N} \mid 1 < d < p \bullet d \nmid p$, as $d \mid p \Rightarrow d \mid n$ and p is minimal. Therefore, by Lemma 2.4.2, p is prime.

In particular, every composite n has a factorisation n = pk, with $1 < p, k < n.^{32}$

³²Hence for composite n, \mathbb{Z}_n is not an **integral domain**.

Corollary 2.4.7. For $a, b, c : \mathbb{N}_+$, if a, c and b, c are coprime, then ab, c are coprime.

Proof. Suppose HCF(ab, c) > 1. By Proposition 2.4.6, HCF(ab, c) has a prime factor p, with $p \mid ab \land p \mid c$. It follows from Definition 2.4.1 that $p \mid a \lor p \mid b$, and so either a, c are not coprime, or b, c are not coprime. \Box

Theorem 2.4.8. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes $p_1, \ldots p_N$, for some $N : \mathbb{N}^{33}$ Let $P = 1 + \prod_{i=1}^{N} p_i$. By Proposition 2.4.6,³⁴ P has a prime factor q. However, $\forall i : \mathbb{N} \mid 1 \leq i \leq N \bullet p_i \nmid P$, and so the list was not complete, as it did not contain the prime number q.

Theorem 2.4.9 (Fundamental Theorem of Arithmetic). $\forall n : \mathbb{N}_+$, *n* has a unique³⁵ representation as a product of primes.³⁶

Proof. By strong induction on n. n = 1 has a unique representation as the empty product.

- 1. Existence: for n > 1, by Proposition 2.4.6 *n* has a prime factor p_0 , and so $n = kp_0$ for some $k : \mathbb{N}_+ \mid k < n$. By the inductive assumption, $k = p_1 \cdots p_N$ for some $N : \mathbb{N}$, and so $n = p_0 p_1 \cdots p_N$.
- 2. Uniqueness: suppose $n = p_1 \cdots p_N = q_1 \cdots q_N$ for p_i, q_i prime. By Proposition 2.4.4, $p_N \mid q_j$ for some j. By Proposition 2.4.3, $p_N = q_j$ and by renumbering the $q_i, p_N = q_N$ and $p_1 \cdots p_{N-1} = q_1 \cdots q_{N-1} < n$. By the inductive assumption, p_1, \ldots, p_{N-1} and q_1, \ldots, q_{N-1} are the same (up to re-numbering).

³³Note that this proof *does* work for N = 0, as 1 +the empty product = 2 has a prime factor not in the empty list.

³⁴Note that P > 1 by definition.

 $^{^{35}\}mathrm{The}$ representation is unique up to re-ordering the primes.

³⁶Therefore, \mathbb{Z} is a **unique factorisation domain**.

2.5 Linear Congruence Equations

A linear congruence equation in m variables x_i is of the form

$$\sum_{j=1}^m a_j x_j \equiv b \pmod{n}$$

Proposition 2.5.1.

- 1. $ax \equiv b \pmod{n}$ has a solution iff $HCF(a, n) \mid b$.
- 2. $ax \equiv b \pmod{n}$ has a unique solution iff $a \in \mathbb{Z}_n^*$.
- 3. A linear congruence equation in m variables x_i has a solution iff $HCF(a_1, \ldots, a_m, n) \mid b$.

Proof.

- 1. By Corollary 2.2.1.
- 2. Suppose $a \in \mathbb{Z}_n^*$. By Proposition 2.3.8.1, *a* has a multiplicative inverse $p : \mathbb{Z}_n$, and so x = pb is a solution. Also, if $ax \equiv ax' \equiv b \pmod{n}$, then $x \equiv apx \equiv apx' \equiv x' \pmod{n}$.

Otherwise, suppose $a \notin \mathbb{Z}_n^*$. By Proposition 2.3.8.2, $\exists p : \mathbb{Z}_n \bullet ap \equiv 0 \pmod{n} \land p \not\equiv 0 \pmod{n}$. It follows that if x is a solution, x + p is a distinct solution modulo n.

3. The congruence has a solution iff the corresponding integer linear equation $\left(\sum_{j=1}^{m} a_j x_j\right) + n x_{m+1} = b$ in m + 1 variables x_i has a solution.

The result follows from Theorem 2.2.2.

Lemma 2.5.2. For $a_1, a_2, b_1, b_2 : \mathbb{Z}, n_1, n_2 : \mathbb{N}_+ \mid \text{HCF}(n_1, n_2) = 1$, the simultaneous congruences $a_i x \equiv b_i \pmod{n_i}$ have a solution x iff each congruence individually has a solution.

Proof. Suppose for $i = 1, 2, \exists x_i : \mathbb{Z} : a_i x_i \equiv b_i \pmod{n_i}$. By Corollary 2.5.1.2, $\exists p_1, p_2 : \mathbb{Z} \bullet p_1 n_1 \equiv 1 \pmod{n_2} \land p_2 n_2 \equiv 1 \pmod{n_1}$. Then $x = p_2 n_2 x_1 + p_1 n_1 x_2$ has $x \equiv x_1 \pmod{n_1} \land x \equiv x_2 \pmod{n_2}$, solving both equations simultaneously.

The converse is trivial.

If x_1, x_2 are unique modulo n_1, n_2 respectively, it follows that x is unique modulo $n_1 n_2$.

Theorem 2.5.3 (Chinese Remainder Theorem). A set of $m : \mathbb{N}_+$ simultaneous linear congruence equations $a_i x \equiv b_i \pmod{n_i}$ in one variable x, with n_i coprime, has a solution iff each congruence individually has a solution.

Proof. By induction on m. m = 1 follows from Proposition 2.5.1.1, and m = 2 is Lemma 2.5.2.

Given m simultaneous congruences, we can replace two of them with the single congruence $x \equiv p_2 n_2 x_1 + p_1 n_1 x_2 \pmod{n_1 n_2}$, as in the proof of Lemma 2.5.2. By Corollary 2.4.7, for i > 2, $n_1 n_2$, n_i are coprime. By the inductive assumption, the resulting m - 1 simultaneous congruences have a solution.

The converse is trivial.

By Proposition 2.5.1.2, if the individual solutions the solutions x_i are unique modulo n_i , then x is unique modulo $\prod n_i$.³⁷

³⁷A practical application of this result is that if an army of N soldiers knows the remainders r_i when the soldiers are divided into groups of p_i (for sufficiently many primes that $\prod p_i > N$), then the exact size of the army can be computed from the simultaneous congruences $N \equiv r_i \pmod{p_i}$.

3 Groups

3.1 Groups

Definition 3.1.1 (Group Axioms). If G is a set, and $_\cdot_: G \times G \to G$ is a binary operator on G, then the pair (G, \cdot) is a **group** if:

1. $\forall a, b, c : G \bullet (a \cdot b) \cdot c = a \cdot (b \cdot c).$ 2. $\exists e : G \bullet \forall g : G \bullet e \cdot g = g \cdot e = g.$ 3. $\forall g : G \bullet \exists g^{-1} : G \bullet g^{-1} \cdot g = g \cdot g^{-1} = e.$

e is the **identity element**, and g^{-1} is the **inverse** of *g*. The binary operator is **group multiplication**, and the symbol \cdot is usually omitted. For $k : \mathbb{Z}$ we will write g^k to mean the product of |k| copies of *g* or g^{-1} , with $g^0 = e^{.38}$ Where it is clearer, we will write *G* to mean a set *G* and a group (G, \cdot) interchangeably. We may write e_G to mean the identity element of a group *G* in particular.

Proposition 3.1.2.

1.
$$\forall g, h : G \bullet gh = g \Leftrightarrow hg = g \Leftrightarrow h = e.^{39}$$

2.
$$\forall g, h : G \mid gh = e \Leftrightarrow hg = e \Leftrightarrow h = g^{-1}.^{40}$$

Proof.

- 1. $gh = g \Rightarrow g^{-1}gh = g^{-1}g \Rightarrow h = e$. hg = g is similar.
- 2. $gh = e \Rightarrow ghg = g$. By (1), hg = e.

Suppose h_1, h_2 : G are inverses of g. Then $h_1 = h_1 e = h_1 g h_2 = e h_2 = h_2$.

Note that for g, h : G, $(h^{-1}g^{-1})(gh) = h^{-1}(g^{-1}g)h = h^{-1}h = e$, and so $(gh)^{-1} = h^{-1}g^{-1}$.

If G is Abelian, where it is clearer we will write 0 to mean e, g + h to mean $g \cdot h$, and kg to mean g^k .

³⁸The usual exponent rules follow.

³⁹I.e. the identity element is unique, and is the only **left-identity** and the only **right-identity**.

⁴⁰I.e. the inverse of g is unique, and is the only **left-inverse** and the only **right-inverse**.

Definition 3.1.3. $\mathbb{1} = (\{e\}, \cdot)$, with $e \cdot e = e$, is the **trivial group**.

Definition 3.1.4.

- 1. For $g: G, \langle g \rangle = \{ k : \mathbb{Z} \bullet g^k \}.$
- 2. G is cyclic if $\exists g : G \bullet \langle g \rangle = G$.
- 3. For $n : \mathbb{N}_+, C_n = (\mathbb{Z}_n, +)$.

If $G = \langle g \rangle$ then g is a generator.

3.2 Commutativity

Definition 3.2.1.

- 1. If $g, h : G \mid gh = hg$, then g, h commute.
- 2. If $\forall g, h : G \bullet gh = hg$, then G is **Abelian**.

Definition 3.2.2.

- 1. For g: G, $C_G(g) = \{h: G \mid gh = hg\}$ is the centralizer of g.
- 2. For $H : \mathbb{P} G$, $C_G(H) = \{ g : G \mid (\forall h : H \bullet gh = hg) \}$.
- 3. $Z(G) = C_G(G)$ is the center of G.

Where it is clearer, we will write C to mean C_G .

3.3 Homomorphisms

Definition 3.3.1.

- 1. $\theta: G \to H$ is a homomorphism if $\forall a, b: G \bullet \theta(a \cdot b) = \theta(a) \cdot \theta(b)$.
- 2. An *isomorphism* is a bijective homomorphism.
- 3. $G \cong H$ (G, H are **isomorphic**) if there is an isomorphism $\theta : G \to H$.

Proposition 3.3.2. For a homomorphism $\theta : G \to H$,

- 1. $\theta(e_G) = e_H$,
- 2. $\forall g : G \bullet \theta(g^{-1}) = \theta(g)^{-1}$.

Proof. Given g: G,

- 1. $\theta(g) = \theta(e_G g) = \theta(e_G)\theta(g)$, so by Proposition 3.1.2.1 $\theta(e_G) = e_H$.
- 2. $e_H = \theta(e_G) = \theta(gg^{-1}) = \theta(g)\theta(g^{-1})$, and so by Proposition 3.1.2.2 $\theta(g^{-1}) = \theta(g)^{-1}$.

Proposition 3.3.3. \cong is an equivalence relation.

Proof.

- 1. Reflexivity: $id_G: G \to G$ is trivially an isomorphism.
- 2. Symmetry: suppose θ : $G \to H$ is an isomorphism. Since θ is a bijection, θ^{-1} is a bijection. Given a, b : H, let $a = \theta(c)$ and $b = \theta(d)$. Then $\theta^{-1}(ab) = \theta^{-1}(\theta(c)\theta(d)) = \theta^{-1}(\theta(cd)) = cd = \theta^{-1}(a)\theta^{-1}(b)$. Hence, θ is a homomorphism.
- 3. Transitivity: suppose $\theta : G \to H$, $\phi : H \to K$ are isomorphisms. Then $\phi\theta$ is a bijection, and for a, b : G, $\phi\theta(ab) = \phi(\theta(a)\theta(b)) = \phi\theta(a)\phi\theta(b)$ and so $\phi\theta$ is a homomorphism.

Definition 3.3.4. For a homomorphism θ : $G \to H$, the **kernel** of θ is $\ker \theta = \{ g : G \mid \theta(g) = e_H \}.$

Proposition 3.3.5. θ is injective iff ker $\theta \cong 1$.

Proof. Suppose ker $\theta = \{e_G\}$. Then $\forall g, h : G \bullet \theta(g) = \theta(h) \Rightarrow \theta(gh^{-1}) = \theta(g)\theta(h)^{-1} = e_H \Rightarrow gh^{-1} = e_G \Rightarrow g = h$. The converse is trivial.

Definition 3.3.6. A homomorphism $\theta : G \to H$ is **trivial** if ker $\theta = G$.

Equivalently, θ is trivial iff ran $\theta \cong 1$.

3.4 Subgroups

Definition 3.4.1. For $H : \mathbb{P} G$, (H, \cdot) is a subgroup of (G, \cdot) if:

- 1. $e \in H$,
- 2. $\forall g : H \bullet g^{-1} \in H$,
- 3. $\forall g, h : H \bullet gh \in H$.

We write $H \leq G$. If $H \neq G$, then H is a **proper subgroup** of G, and we write H < G.

Note that if $H \leq G$, then H is a group. Where it is clearer, we will write $H \leq G$ if $H \cong H' \leq G$.

Definition 3.4.2. $G_{\leq} = \{ H : \mathbb{P} G \mid H \leq G \}.^{41}$

Proposition 3.4.3. $\langle g \rangle \leq G$.

Proof. For
$$k, k' : \mathbb{Z}, e = g^0, (g^k)^{-1} = g^{-k}$$
, and $g^k g^{k'} = g^{k+k'}$.

Proposition 3.4.4. If $\theta : G \to K$ is a homomorphism, $(H \triangleleft \theta) : H \to K$ is a homomorphism.

Proof. Trivial.

Proposition 3.4.5. If $\theta : G \to H$ is a homomorphism,

- 1. ker $\theta \leq G$,
- 2. ran $\theta \leq H$.

Proof.

- 1. $\theta(e_G) = e_H$, and for g_1, g_2 : ker θ , $\theta(g_1^{-1}) = \theta(g_1)^{-1} = e^{-1} = e$, and $\theta(g_1g_2) = \theta(g_1)\theta(g_2) = e^2 = e$.
- 2. $e_H = \theta(e_G)$, for $h_1, h_2 : \operatorname{ran} \theta, \exists g_i : G \bullet \theta(g_i) = h_i$, so $h_1^{-1} = \theta(g_1^{-1})$, and $h_1 h_2 = \theta(g_1 g_2)$.

⁴¹Note that for $H, K : G_{\leq}, H \cong K \Rightarrow H = K$.

3.5 Cosets

Definition 3.5.1.

- 1. For $A : \mathbb{P} G, g : G, gA = \{ a : A \bullet ga \}, and Ag = \{ a : A \bullet ag \}.$
- 2. For $A, B : \mathbb{P} G, g : G, AB = \{ a : A, b : B \bullet ab \}.$
- 3. For $H \leq G$, $_{G}H = \{ g : G \bullet gH \}$ is the set of **left-cosets** of H.
- 4. For $H \leq G$, $H_G = \{ g : G \bullet Hg \}$ is the set of **right-cosets** of H.

Proposition 3.5.2. For $A, B : \mathbb{P} G, g, h : G$,

eA = Ae = A.
 (gh)A = g(hA), (Ag)h = A(gh), and (gA)h = g(Ah).
 (gA)B = g(AB), (AB)g = A(Bg), and (Ag)B = A(gB).
 #A = #gA = #Ag.

Proof. By associativity and inverses in G.

Lemma 3.5.3. For $H \leq G$, $_{G}H$ and H_{G} are partitions of G.

Proof. Let $R: G \leftrightarrow G$ be defined by gRh iff $g \in hH$. R is an equivalence relation, as for a, b, c: G,

- 1. Reflexivity: $e \in H \Rightarrow a = ae \in aH$.
- 2. Symmetry: $a \in bH \Rightarrow (\exists g : H \bullet a = bg)$ $\Rightarrow (\exists g^{-1} : H \bullet b = ag^{-1}) \Rightarrow b \in aH.$

3. Transitivity:
$$(a \in bH \land b \in cH)$$

 $\Rightarrow (\exists g, h : H \bullet a = bg \land b = ch)$
 $\Rightarrow (\exists hg : H \bullet a = c(hg)) \Rightarrow a \in cH.$

 H_G is similar.

Corollary 3.5.4. For $H \leq G$, a, b : G, the following are equivalent⁴²:

- 1. $a \in bH$, 2. $b^{-1}a \in H$,
- 3. aH = bH,
- 4. $b^{-1}aH = H$.

Proof.

- (1) \Leftrightarrow (2): $a \in bH \Leftrightarrow b^{-1}a \in b^{-1}bH = H$.
- (1) \Rightarrow (3): By Lemma 3.5.3, $a \in bH \Rightarrow aH \cap bH \neq \emptyset \Rightarrow aH = bH$.
- (3) \Leftrightarrow (4): $aH = bH \Leftrightarrow b^{-1}aH = b^{-1}bH = H$.
- (3) \Rightarrow (1): $a = ae \in aH$, and aH = bH, so $a \in bH$.

		_	
_	_	_	

In particular, for a: G, aH = eH = H iff $a \in H$.

Proposition 3.5.5. For $H \leq G$,

$$\forall A : \mathbb{P} G \mid A \neq \emptyset \bullet AH = H \Leftrightarrow HA = H \Leftrightarrow A \subset H$$

 Proof. If A ⊆ H, then for a : A, h : H, a ∈ H and so $\forall ah : AH \bullet ah ∈ H$.

 Also, given h : H, choose a : A, then $a^{-1}h ∈ H$ and so $h = aa^{-1}h ∈ AH$.

 Otherwise, $\exists a : A \mid a \notin H$, so a = ae ∈ AH and AH ≠ H.

 Similarly for HA = A.

In particular, HH = H.

3.6 Orders

Definition 3.6.1. For g : G, |g| is the least $n : \mathbb{N}_+$ such that $g^n = e$. If there is no such n, $|g| = \infty$.⁴³

|g| is the order of g.

Proposition 3.6.2. $\forall g : G, n : \mathbb{Z} \mid |g| \neq \infty \bullet g^n = e \Leftrightarrow |g| \mid n.$

Proof. Suppose $g^n = e$. By Lemma 2.1.3, n = q |g| + r for $0 \le r < |g|$ and $e = g^n = (g^{|g|})^q g^r = e^q g^r = g^r$. It follows that r = 0. Conversely, if n = k |q| then $q^n = (q^{|g|})^k = e$.

⁴²Similarly for right-cosets.

 $^{^{43}\}infty$ is not a number, but $\infty > n$ for any number n.

Proposition 3.6.3. $|g| = \# \langle g \rangle$.

Proof. If $|g| \neq \infty$, the result follows by Lemma 2.1.3 and Proposition 3.6.2. If $|g| = \infty$, then $g^a = g^b \Rightarrow e = g^{b-a} \Rightarrow a = b$ and so $f(k : \mathbb{Z}) = g^k$ is a bijection.⁴⁴

In particular, $\forall g : G, g^0, g^1, \dots g^{|g|-1}$ are distinct, and G is cyclic iff $\exists g : G \bullet |g| = \#G$.

Proposition 3.6.4. *G* is cyclic iff $G \cong \mathbb{Z}$ or $G \cong C_n$ for some $n : \mathbb{N}_+$.

Proof. Suppose $G = \langle g \rangle$.

If $|g| = \infty$, let $f(k : \mathbb{Z}) = g^k$. Otherwise, let $f(k : \mathbb{Z}_{|g|}) = g^k$. Either way, by Proposition 3.6.3 f is an isomorphism.

Conversely, $\mathbb{Z} = \langle 1 \rangle$ and $\mathbb{Z}_n = \langle [1]_n \rangle$.

Note that f depends on the choice of the generator g, which is not unique for n > 2.

Lemma 3.6.5. If a, b : G commute, with |a|, |b| coprime, then |ab| = |a| |b|.

Proof. Let m = |a|, n = |b|. $(ab)^{mn} = (a^m)^n (b^n)^m = e$, and so $|ab| \leq mn$. Conversely, if |ab| = d, $e = (ab)^{nd} = a^{nd} (b^n)^d = a^{nd}$ so $m \mid nd$ and by Theorem 2.4.9, $m \mid d$. Similarly, $n \mid d$, and so $mn \mid d$. Hence, $mn \leq d$. \Box

Theorem 3.6.6. If G is Abelian, and $\{g : G \bullet |g|\}$ is bounded above, then $\exists g : G \bullet \forall h : G \bullet |h| ||g|.$

Proof. Let |g| be maximal. Suppose $\exists h : G \bullet |h| \nmid |g|$. By Theorem 2.4.9, |h| = pk for some prime $p \nmid |g|$. It follows that $|h^k| = p$ and so by Lemma 3.6.5, $|h^k g| = p |g| > |g|$, a contradiction.

3.7 Group Actions

Definition 3.7.1.

- 1. For a set X, $Sym(X) = X \rightarrow X$.
- 2. For $n : \mathbb{N}_+$, $S_n = \text{Sym}(\{1, \dots, n\})$.

 $^{^{44}\}infty$ is not really a cardinal, but here $\#\mathbb{Z} = \infty$ is used as a shorthand for " \mathbb{Z} is infinite".

Proposition 3.7.2. For a set X, $(Sym(X), \circ)$ is a group.

Proof.

- 1. $\forall \sigma, \tau : X \rightarrowtail X \bullet \sigma \circ \tau \in X \rightarrowtail X$.
- 2. \circ is associative.
- 3. $\operatorname{id}_X : X \rightarrow X$.
- 4. $\forall \sigma : X \rightarrow X \bullet \exists \sigma^{-1} : X \rightarrow X \bullet \sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1} = \operatorname{id}_X.$

Sym(X) is the "permutation group of X", or the "symmetric group on X". S_n is the "symmetric group on n elements".

Definition 3.7.3.

- 1. A group action on X is a homomorphism $\theta : G \to \text{Sym}(X)$.
- 2. θ is a **faithful** group action if it is injective.
- 3. θ is a **trivial** group action if it is a trivial homomorphism.

We say "G acts on X", "G acts faithfully on X", or "G acts trivially on X". Where G is presented as a subgroup of Sym(X), the inclusion map gives the **natural** group action on X, and we say "G acts naturally on X".

Where it is clearer, we will write gx to mean $\theta(g)(x)$.

Proposition 3.7.4. If G acts on X,

- 1. $\forall g, h : G, x : X \bullet g(hx) = (gh)x.$
- 2. $\forall x : X \bullet ex = x$.

3. The action is faithful iff $\forall g : G \bullet (\forall x : X \bullet gx = x) \Rightarrow g = e$.

Proof.

- 1. $\theta(g)(\theta(h)(x)) = (\theta(g) \circ \theta(h))(x).$
- 2. $\theta(e) = \operatorname{id}_X$.
- 3. By Proposition 3.3.5, θ is faithful iff ker $\theta \cong 1$.

Proposition 3.7.5. If G acts on X, and $H \leq G$, then H acts on X.

Proof. If $\theta : G \to \text{Sym}(X)$ is a homomorphism, then by Proposition 3.4.4, $(H \lhd \theta) : H \to \text{Sym}(X)$ is also a homomorphism. \Box

Definition 3.7.6.

- 1. The **orbit** of x, $\operatorname{Orb}_G(x) = \{ g : G \bullet gx \}.$
- 2. The stabiliser of x, $\operatorname{Stab}_G(x) = \{ g : G \mid gx = x \}.$

Where it is clearer, we will write Orb to mean Orb_G , and Stab to mean $Stab_G$.

Proposition 3.7.7. $\{x : X \bullet Orb(x)\}$ is a partition of X.

Proof. Let $R: X \leftrightarrow X$ be defined as xRy iff $x \in Orb(y)$. R is an equivalence relation, as for x, y, z: X,

1. Reflexivity: $x \in Orb(x)$ as x = ex.

2. Symmetry:
$$x \in \operatorname{Orb}(y) \Rightarrow (\exists g : G \bullet x = gy)$$

 $\Rightarrow (\exists g^{-1} : G \bullet y = g^{-1}x) \Rightarrow y \in \operatorname{Orb}(x).$

3. Transitivity:
$$(x \in \operatorname{Orb}(y) \land y \in \operatorname{Orb}(z))$$

 $\Rightarrow (\exists g, h : G \bullet x = gy \land y = hz)$
 $\Rightarrow (\exists gh : G \bullet x = (gh)z) \Rightarrow x \in \operatorname{Orb}(z).$

Proposition 3.7.8. $\forall x : X \bullet \operatorname{Stab}(x) \leq G$.

Proof. ex = x, and $\forall g, h : \text{Stab}(x), gx = x \Rightarrow x = g^{-1}x$, and (gh)x = g(hx) = gx = x.

Theorem 3.7.9 (Cayley's Theorem). Every group is isomorphic to a subgroup of a permutation group.

Proof. Let $\theta(g:G) = \phi_g : \text{Sym}(G)$, where $\phi_g(h:G) = gh$.

- 1. ϕ_g is injective, as $gh = gh' \Rightarrow g^{-1}gh = g^{-1}gh' \Rightarrow h = h'$.
- 2. θ is injective, as $\phi_g = \phi_h \Rightarrow g = \phi_g(e) = \phi_h(e) = h$.

3. $\forall g, h : G \bullet \phi_g \circ \phi_h = \phi_{gh}$.

Hence, $G \cong \operatorname{ran} \theta \leq \operatorname{Sym}(G)$.

I.e. every group acts naturally and faithfully on itself by left-multiplication.⁴⁵

⁴⁵Or by right-multiplication of inverses, with $\phi'_q(h) = hg^{-1}$.

Proposition 3.7.10. For $H \leq G$, $\theta : G \to \text{Sym}(_GH)$ defined by $\theta(a)(bH) = (ab)H$ is a homomorphism.

Proof. If bH = cH then (ab)H = a(bH) = a(cH) = (ac)H. Therefore, θ is well-defined. Also, $\forall g, h : G \bullet g(hH) = (gh)H$. Therefore θ is a homomorphism.

I.e. every group acts on left-cosets⁴⁶ of its subgroups.

3.8 Lagrange's Theorem

Theorem 3.8.1 (Lagrange's Theorem). If G is a finite⁴⁷ group, and $H \leq G$,

- 1. $\#G = \#_G H \cdot \#H$. In particular, $\#H \mid \#G$.
- 2. $\forall g : G \bullet |g| \mid \#G$.

Proof.

- 1. By Proposition 3.5.2.3 and Lemma 3.5.3, G has a partition into $\#_G H$ sets of cardinality # H.
- 2. By Proposition 3.6.3, Proposition 3.4.3, and (1), $|g| = \# \langle g \rangle | \# G$.

Corollary 3.8.2. $C_k \leq C_n$ iff $k \mid n$.

Proof. Suppose n = kd for some $d : \mathbb{N}_+$. Let $g : C_n$ be a generator, then $(g^d)^k = e$ but for $1 \leq k' < k$, dk' < n and so $(g^d)^{k'} \neq e$. Hence $|g^d| = k$ and $\langle g^d \rangle \cong C_k$.

The converse follows immediately from Theorem 3.8.1.2.

Theorem 3.8.3 (Orbit-Stabiliser Theorem). If G is a finite⁴⁷ group acting on a set X, then $\forall x : X \bullet \# \operatorname{Orb}(x) \cdot \# \operatorname{Stab}(x) = \# G$. In particular, $\operatorname{Orb}(x) \mid \# G$.

Proof. Let H = Stab(x). By Proposition 3.7.8 and Lemma 3.5.3, $_{G}H$ is a partition of G. Let $f : \text{Orb}(x) \to _{G}H$ be defined by f(gx) = gH.

1. f is well-defined: if gx = hx, then $x = g^{-1}hx \Rightarrow g^{-1}h \in H$. By Corollary 3.5.4, gH = hH.

⁴⁶Or, similarly, right-cosets.

⁴⁷In fact, the proof does extend to infinite groups.

- 2. f is injective: by Corollary 3.5.4, $gH = hH \Rightarrow g^{-1}h \in H \Rightarrow g^{-1}hx = x \Rightarrow gx = hx$.
- 3. f is surjective: given $gH : {}_{G}H, f(gx) = gH$.

Therefore, f is a bijection. The result follows by Theorem 3.8.1.1.

3.9 The Group \mathbb{Z}_n^*

Definition 3.9.1. Euler's totient function $\phi(n : \mathbb{N}_+) = \#\mathbb{Z}_n^*$.

 $\phi(n)$ counts how many of $1, \ldots n$ are coprime to n.

Proposition 3.9.2. For p prime,

- 1. $\phi(1) = 1$. 2. $\phi(p) = p - 1$.
- 3. $\forall k : \mathbb{N}_+ \bullet \phi(p^k) = p^{k-1}(p-1).$
- 4. $\forall m, n : \mathbb{N}_+ \mid \text{HCF}(m, n) = 1 \bullet \phi(mn) = \phi(m)\phi(n).^{48}$

Proof.

1. Trivial.

- 2. Follows immediately from Lemma 2.4.2.
- 3. Let $1 \leq a \leq p^k$. By Theorem 2.4.9, every such a which is not coprime to p^k has a = pd for some $1 \leq d \leq p^{k-1}$. Therefore, $\#\mathbb{Z}_{p^k} \#\mathbb{Z}_{p^k}^* = p^{k-1}$ and so $\#\mathbb{Z}_{p^k}^* = p^k p^{k-1} = p^{k-1}(p-1)$.
- 4. By Lemma 2.5.2, $ax \equiv 1 \pmod{m}$ and $bx \equiv 1 \pmod{n}$ have a unique simultaneous solution $x_{(a,b)} : \mathbb{Z}_{mn}^*$ for each $(a,b) : \mathbb{Z}_m^* \times \mathbb{Z}_n^*$.

Conversely, by Proposition 2.3.8.1 each $x : \mathbb{Z}_{mn}^*$ has a unique $c : \mathbb{Z}_{mn}^*$ with $cx \equiv 1 \pmod{mn}$. Letting $a \equiv c \pmod{m}$, $b \equiv c \pmod{n}$, it follows that $a \in \mathbb{Z}_m^*$ and $b \in \mathbb{Z}_n^*$, and so $x = x_{(a,b)}$. Therefore, $\#\mathbb{Z}_{mn}^* = \# (\mathbb{Z}_m^* \times \mathbb{Z}_n^*) = \#\mathbb{Z}_m^* \cdot \#\mathbb{Z}_n^*$.

 $^{^{48}\}mathrm{By}$ Theorem 2.4.9, it follows that $\phi(n)$ can be computed relatively easily, i.e. we don't actually have to find all of the HCFs.

Proposition 3.9.3. (\mathbb{Z}_n^*, \cdot) is a group.

Proof. Follows immediately from Proposition 2.3.8.1.

Theorem 3.9.4 (Fermat-Euler Theorem). $\forall a : \mathbb{Z}_n^* \bullet a^{\phi(n)} = 1.$

Proof. Follows immediately from Theorem 3.8.1.2.

Corollary 3.9.5 (Fermat's Little Theorem). If p is prime, then $\forall a \in \mathbb{Z}_p \bullet$ $a^p \equiv a \pmod{p}$.

Proof. a = 0 is trivial. By Corollary 2.4.5, if $a \neq 0$ then $a \in \mathbb{Z}_p^*$, and so by Theorem 3.9.4 and Proposition 3.9.2.2, $a^p \equiv a^{p-1}a \equiv 1 \cdot a \pmod{p}$. \Box

Theorem 3.9.6. For p prime, a polynomial of degree $k : \mathbb{N}$ in one variable has at most k roots in \mathbb{Z}_p .

Proof. By induction on k. k = 0, 1 are trivial. Suppose r is a root of $f(X) \equiv \sum_{i=0}^{k+1} a_i X^i \pmod{p}$, with $a_{k+1} \neq 0.^{49}$ Let $g(X) \equiv \sum_{i=0}^k b_i X^i \pmod{p}$ where $b_k = a_{k+1} \neq 0$, and for $0 < i \leq k$, $b_{i-1} \equiv a_i + rb_i \pmod{p}$.

$$(X - r)g(X) \equiv \sum_{i=0}^{k} b_i \left(X^{i+1} - rX^i \right)$$
$$\equiv b_k X^{k+1} + \left[\sum_{i=1}^{k} \left(b_{i-1} - rb_i \right) X^i \right] - rb_0$$
$$\equiv a_{k+1} X^{k+1} + \left[\sum_{i=1}^{k} a_i X^i \right] - rb_0$$
$$\equiv f(X) - a_0 - rb_0 \pmod{p}$$

By evaluating at X = r, it follows that $a_0 + rb_0 \equiv 0 \pmod{p}$ and f(X) =(X - r)g(X). By Proposition 2.3.8.2 and Corollary 2.4.5, if f(x) = 0, either x = r or g(x) = 0. By the inductive assumption, g(X) has at most k roots, and so f(X) has at most k + 1.50

⁴⁹Since deg $f \in \mathbb{N}$, f is not the zero polynomial.

⁵⁰The only fact we used about \mathbb{Z}_p was that $ab = 0 \Rightarrow a = 0 \lor b = 0$, so this proof also works for $\mathbb{Z}[X]$, $\mathbb{Q}[X]$, $\mathbb{R}[X]$ and $\mathbb{C}[X]$. See *IB Groups, Rings and Modules.*

Corollary 3.9.7. For p prime,

- 1. $\forall a : \mathbb{Z}_p$, a has at most two square roots.
- 2. $\forall a : \mathbb{Z}_p^* \bullet a = a^{-1} \Leftrightarrow a \equiv \pm 1 \pmod{p}$.

Proof.

- 1. By Theorem 3.9.6, $X^2 a \pmod{p}$ has at most two roots.⁵¹
- 2. *a* is a root of $X^2 1 \pmod{p}$. By (1), there are no more roots.

 \square

Theorem 3.9.8. For p prime, \mathbb{Z}_p^* is cyclic.

Proof. By Theorem 3.6.6, $\exists g : \mathbb{Z}_p^* \bullet \forall a : \mathbb{Z}_p^* \bullet |a| ||g|$, and so $\forall a : \mathbb{Z}_p^* \bullet a^{|g|} \equiv 1 \pmod{p}$. It follows that $X^{|g|} - 1$ has p - 1 roots in \mathbb{Z}_p and so by Theorem 3.9.6, $p - 1 \leq |g|$. By Theorem 3.8.1.2, |g| = p - 1 and $\langle g \rangle = \mathbb{Z}_p^*$. \Box

A generator of \mathbb{Z}_p^* is also called a **primitive root** modulo p.

Corollary 3.9.9 (Wilson's Theorem).

- 1. For p prime, $(p-1)! \equiv -1 \pmod{p}$.
- 2. For n composite, $(n-1)! \equiv 0 \pmod{n}$.

Proof.

1. p = 2 is trivial. Suppose p = 2k + 1 is prime.⁵²

Let $g: \mathbb{Z}_p^*$ be a generator. Since $(g^k)^2 \equiv 1 \pmod{p}$ but $|g| \neq k$, by Corollary 3.9.7.1 $g^k \equiv -1 \pmod{p}$.

By Corollary 2.4.5 and Corollary 3.9.5,

$$(p-1)! \equiv \prod_{a:\mathbb{Z}_p^*} a \equiv \prod_{i=1}^{p-1} g^i \equiv g^{\frac{p(p-1)}{2}} \equiv (g^p)^k \equiv g^k \equiv -1 \pmod{p}$$

2. By Proposition 2.4.6, n has a factorisation n = ab with 1 < a, b < n, so $ab \equiv 0 \pmod{n}$, and the product (n-1)! includes a, b.

⁵¹For p > 2, if $b \neq 0$ is a square root, -b is a distinct square root, and it follows that exactly half of \mathbb{Z}_p^* are squares.

⁵²2 is the only even prime number. It is often a special case because $\mathbb{Z}_2^* \cong \mathbb{1}$.

Corollary 3.9.10. For p prime, \mathbb{Z}_p^* contains a primitive nth root of 1 iff $p \equiv 1 \pmod{n}$.

Proof. Follows immediately from Corollary 3.8.2.

Corollary 3.9.11. For p prime, -1 is a square modulo p iff p = 2 or $p \equiv 1 \pmod{4}$.

Proof. p = 2 is trivial. If $p > 2, -1 \not\equiv 1 \pmod{p}$ and so if $a : \mathbb{Z}_p^* \mid a^2 \equiv -1 \pmod{p}$, then |a| = 4. The result follows by Corollary 3.9.10.

3.10 Conjugation

Definition 3.10.1.

- 1. For $a, g : G, a^g = g^{-1}ag$.
- 2. For $A : \mathbb{P} G, g : G, A^g = g^{-1}Ag$.
- 3. For $a, b : G, a \sim b$ if $\exists g : G \bullet a = b^g$.
- 4. For $A, B : \mathbb{P} G, A \sim B$ if $\exists g : G \bullet A = B^g$.

We say a^g is the "conjugation of a by g", and "a,b are conjugate".

Definition 3.10.2. For g : G, $ccl_G(g) = \{h : G \mid h \sim g\}$ is the **conjugacy** class of g.

Where it is clearer, we will write ccl to mean ccl_G .

Proposition 3.10.3. For a, b, g, h : G, and $A, B : \mathbb{P} G$,

- 1. $a^e = a$, and $A^e = A$.
- 2. $a = a^g$ iff a, g commute.
- 3. $(a^{-1})^g = (a^g)^{-1}$, and $(A^{-1})^g = (A^g)^{-1}$.
- 4. $(a^g)^h = a^{gh}$, and $(A^g)^h = A^{gh}$.
- 5. $(ab)^g = a^g b^g$.

6. If a, b commute, then a^g, b^g commute.

Proof.

1. $e^{-1}ae = a$.

2. $ag = ga \Leftrightarrow g^{-1}ag = g^{-1}ga = a$. 3. $g^{-1}a^{-1}g = (g^{-1}ag)^{-1}$. 4. $h^{-1}(g^{-1}ag)h = (gh)^{-1}a(gh)$. 5. $g^{-1}(ab)g = (g^{-1}ag)(g^{-1}bg)$. 6. $a^{g}b^{g} = (ab)^{g} = (ba)^{g} = b^{g}a^{g}$.

Similarly for $A, B : \mathbb{P} G$.

Proposition 3.10.4. \sim is an equivalence relation.

Proof.

- 1. Reflexivity: $a = a^e$.
- 2. Symmetry: $a = b^g \Rightarrow b = a^{g^{-1}}$.
- 3. Transitivity: $(a = b^g \land b = c^h) \Rightarrow a = (c^h)^g = c^{hg}$.

Similarly for $A, B : \mathbb{P} G$.

It follows that $\{g: G \bullet \operatorname{ccl}(g)\}$ is a partition of G.

Theorem 3.10.5. For g : G,

- 1. $\phi_q(a:G) = a^g$ is an isomorphism.
- 2. $\psi_q(A : \mathbb{P} G) = A^g$ is a bijection.
- 3. $(G_{\leq} \lhd \psi_g) \in \text{Sym}(G_{\leq}), \text{ i.e. if } H \leq G, \text{ then } H^g \leq G.$
- 4. $\theta: G \to \text{Sym}(G)$ given by $\theta(g) = \phi_g$ is a homomorphism.
- 5. $\Theta: G \to \operatorname{Sym}(\mathbb{P} G)$ given by $\Theta(g) = \psi_g$ is a homomorphism.
- 6. $\Theta': G \to \operatorname{Sym}(G_{\leq})$ given by $\Theta(g) = (G_{\leq} \lhd \psi_g)$ is a homomorphism.

Proof.

- 1. ϕ_g is a homomorphism by Proposition 3.10.3.5. ϕ_g is injective: $a^g = b^g \Rightarrow (a^g)^{g^{-1}} = (b^g)^{g^{-1}} \Rightarrow a = b$. ϕ_g is surjective: given a : G, $\phi_g(a^{g^{-1}}) = (a^{g^{-1}})^g = a$.
- 2. Similarly, $\psi_g \in \text{Sym}(\mathbb{P} G)$ is injective and surjective.

- 3. If $H \leq G$, $e = e^g \in H^g$, $a^g \in H^g \Rightarrow (a^g)^{-1} = (a^{-1})^g \in H^g$, and $a^g, b^g \in H^g \Rightarrow a^g b^g = (ab)^g \in H$. Therefore, $\psi_q(H) \leq G$.
- 4. By Proposition 3.10.3.4, $\phi_g \circ \phi_h = \phi_{gh}$.
- 5. Similarly, Θ is a homomorphism.
- 6. Similarly, Θ' is a homomorphism.

I.e. G acts on G, $\mathbb{P} G$ and G_{\leq} by conjugation.⁵³

Corollary 3.10.6.

- 1. $\forall a : G \bullet C(a) \leq G$.
- 2. $\forall A : \mathbb{P} G, C(A) \leq G.$

Proof.

- 1. G acts on itself by conjugation. By Proposition 3.10.3.2, Stab(a) = C(a). The result follows by Proposition 3.7.8.
- 2. Similarly, G acts on \mathbb{P} G by conjugation, and $\operatorname{Stab}(A) = \operatorname{C}(A)$.

Corollary 3.10.7. $\forall g : G \bullet \# \operatorname{ccl}(g) \cdot \# \operatorname{C}(g) = \# G$. In particular, $\# \operatorname{ccl}(g) \mid \# G$.

Proof. When G acts on itself by conjugation, $\operatorname{Orb}(g) = \operatorname{ccl}(g)$. The result follows by Theorem 3.8.3.

3.11 Normal Subgroups

Definition 3.11.1. $H \leq G$ if $H \leq G$ and $\forall g : G \bullet H^g = H$.

We say "*H* is a **normal subgroup** of *G*" or "*H* is normal in *G*". If H < G is normal, we write $H \triangleleft G$.

⁵³Also, if $H \leq G$, then H also acts on G, $\mathbb{P} G$ and G_{\leq} by Proposition 3.7.5.

Theorem 3.11.2. For $H \leq G$, the following are equivalent:

1. $\forall g : G \bullet H^g = H \ (i.e. \ H \leq G).$ 2. $\forall g : G \bullet H^g \subseteq H.$ 3. $\forall g : G \bullet gH = Hg.$ 4. If $K \leq G$, then $K \sim H \Rightarrow K = H.$ 5. If $K \leq G$, then $K \sim H \Rightarrow KH = H$ 6. $\forall a, b, g : G \mid aH = bH \bullet agH = bgH.$ 7. $\forall a, b : G \bullet aHbH = abH.$

Proof.

- $(1) \Rightarrow (2)$: Trivial.
- (1) \Leftrightarrow (3): $g^{-1}Hg = H \Leftrightarrow Hg = gH$.
- (1) \Rightarrow (4): $K \sim H \Rightarrow K = H^g \Rightarrow K = H$.
- (2) \Rightarrow (1): $H^{g^{-1}} \subseteq H \Rightarrow H \subseteq H^g$. Also, $H^g \subseteq H$, so $H^g = H$.
- (3) \Rightarrow (6): $aH = bH \Rightarrow aHg = bHg \Rightarrow agH = bgH$.
- (3) \Rightarrow (7): $Hb = bH \Rightarrow aHbH = abHH = abH$.
- (4) \Rightarrow (1): $H^g \sim H \Rightarrow H^g = H$.
- (4) \Rightarrow (5): $K \sim H \Rightarrow K = H \Rightarrow KH = HH = H$.
- (5) \Rightarrow (2): $H^g \sim H \Rightarrow H^g H = H$. By Proposition 3.5.5, $H^g \subseteq H$.
- (6) \Rightarrow (2): $\forall h : H \bullet g^{-1}hH = g^{-1}H \Rightarrow g^{-1}hgH = g^{-1}gH = H$. By Proposition 3.5.5, $h^g \in H$, and so $H^g \subseteq H$.
- (7) \Rightarrow (5): Let $K = H^g$, then $KH = g^{-1}HgH = gg^{-1}HH = H$.

Definition 3.11.3.

- 1. For a: G, $N_G(a) = \{ g: G \mid a^g = a \}$ is the **normalizer** of a.
- 2. For $A : \mathbb{P} G$, $N_G(A) = \{ g : G \mid A^g = A \}$.

Where it is clearer, we will write N to mean N_G. Note that although by Proposition 3.10.3.2, $\forall a : G \bullet N(a) = C(a)$, this is not true for $A : \mathbb{P} G$.

3.12 Quotient Groups

Definition 3.12.1. For $H \leq G$, $G/H = (_GH, \cdot)$, with $aH \cdot bH = aHbH$.

G/H is "the **quotient** of G over H".

Proposition 3.12.2. G/H is a group.

Proof.

- 1. \cdot is well-defined: by Theorem 3.11.2.7, $aHbH = abH \in {}_{G}H$.
- 2. Associativity: follows immediately from associativity in G.
- 3. Identity: $e_{G/H} = eH = H$. $\forall gH : {}_{G}H \bullet H \cdot gH = gH \cdot H = gH$.
- 4. Inverses: $(gH)^{-1} = g^{-1}H$. $\forall gH : {}_{G}H \bullet gH \cdot g^{-1}H = gg^{-1}H = H$.

Since Theorem 3.11.2.7 is *equivalent* to Theorem 3.11.2.1, $H \leq G$ is precisely the condition on which \cdot is well-defined.

Theorem 3.12.3 (The Isomorphism Theorem).

- 1. If $\theta : G \to H$ is a homomorphism, then ker $\theta \leq G$.
- 2. If $\theta: G \to H$ is a homomorphism, then $G/\ker \theta \cong \operatorname{ran} \theta$.
- 3. If $H \leq G$, then $\pi : G \to G/H$ given by $\pi(g) = gH$ is a homomorphism, and ker $\pi = H$.

Proof. Let $K = \ker \theta$.

- 1. $K \leq G$ by Proposition 3.4.5.1. Given $g : G, a : K, \theta(a^g) = \theta(a)^{\theta(g)} = e_H$. Hence, $\forall a : K \bullet a^g \in K$ and so $K^g = K$.
- 2. Define $\phi : G/K \to \operatorname{ran} \theta$ by $\phi(aK) = \theta(a)$. $aK = bK \Leftrightarrow a^{-1}b \in K$, so $\theta(a) = \theta(a)\theta(a^{-1}b) = \theta(b)$ and hence ϕ is well-defined. $\phi(aK \cdot bK) = \phi(abK) = \theta(ab) = \theta(a)\theta(b) = \phi(aK)\phi(bK)$, and so ϕ is

 $\varphi(aK \cdot bK) = \varphi(abK) = \theta(ab) = \theta(ab) = \theta(ab) = \phi(aK)\phi(bK)$, and so ϕ is a homomorphism.

 $\phi(aK) = \phi(bK) \Rightarrow \theta(a) = \theta(b) \Rightarrow \theta(a^{-1}b) = e_H \Rightarrow a^{-1}b \in K \Rightarrow aK = bK$, and so ϕ is injective.

Given $h = \theta(a)$: ran θ , $\phi(aK) = h$, and so ϕ is surjective.

3. By Theorem 3.11.2.7, $\pi(ab) = abH = aHbH = \pi(a)\pi(b)$, and so π is a homomorphism.

$$\pi(a) = e_{G/H} = H \Leftrightarrow aH = H \Leftrightarrow a \in H$$
, and so ker $\pi = H$.

3.13 The Group S_n

Definition 3.13.1.

- 1. $\sigma : S_n$ is a **cycle** of length $k : \mathbb{N}_+$ if $\exists a_1, \ldots a_k : \{1, \ldots n\} \bullet \sigma(a_j) = a_{j+1}$ for $1 \leq j < k$, $\sigma(a_k) = a_1$, and for $x \notin \{a_1, \ldots a_k\}$, $\sigma(x) = x$.
- 2. If σ, τ are cycles, and $\forall x : \{1, \dots, n\} \bullet$ either $\sigma(x) = x$ or $\tau(x) = x$, then σ, τ are **disjoint**.
- 3. A transposition is a cycle of length 2.

We will write $\sigma = (a_1 a_2 \cdots a_k)$.

Proposition 3.13.2.

- 1. For $a_1, \ldots, a_k : \{1, \ldots, n\}, (a_1 a_2 \cdots a_k) = (a_2 a_3 \cdots a_k a_1).$
- 2. If $\sigma, \tau : S_n$ are disjoint cycles, then σ, τ commute.

3. $\forall a : \{1, \ldots, n\} \bullet (a) = \iota$ is the identity of S_n .

Proof.

1.
$$\sigma(a_i) = a_{i+1}$$
 for $2 \leq i < k$, $\sigma(a_k) = a_1$, and $\sigma(a_1) = a_2$.

- 2. $\forall x : \{1, \ldots n\} \bullet \text{wlog } \tau(x) = x$. If $\sigma(x) \neq x$, then $\sigma^2(x) \neq \sigma(x)$, so $\tau(\sigma(x)) = \sigma(x) = \sigma(\tau(x))$. As S_n acts faithfully on $\{1, \ldots n\}, \sigma \tau = \tau \sigma$.
- 3. (a)a = a, and for $x \neq a$, (a)x = x.

г	_	_	_	
			-	

Theorem 3.13.3. $\forall \sigma : S_n \bullet \sigma$ is a product of disjoint cycles.

Proof. Define $m(\sigma) = \#\{x : \{1, \ldots, n\} \bullet \sigma(x) \neq x\}$. We proceed by strong induction on $m(\sigma)$. $m(\sigma) = 0$ is trivial.

Given $x : \{1, \ldots, n\} \mid \sigma(x) \neq x$, let $k = \min\{i : \mathbb{N}_+ \bullet \sigma^i(x) = x\}$.⁵⁴ For $1 \leq i, j \leq k$, if $\sigma^i(x) = \sigma^j(x)$ then $\sigma^{|j-i|}(x) = x$ so i = j. Hence the $\sigma^i(x)$ are distinct, $\sigma(\sigma^i(x)) = \sigma^{i+1}(x)$, and $\sigma(\sigma^{k-1}(x)) = x$.

Therefore, $\gamma = (x \sigma(x) \sigma^2(x) \cdots \sigma^{k-1}(x))$ is a cycle of length k > 1, and $m(\sigma\gamma^{-1}) = m(\sigma) - k < m(\sigma)$, so $\sigma\gamma^{-1}$ is a product of disjoint cycles which are disjoint to γ , hence $\sigma = (\sigma\gamma^{-1})\gamma$ is a product of disjoint cycles. \Box

⁵⁴The set is non-empty as $\sigma^{\#S_n} = \iota$.

Corollary 3.13.4. $\forall \sigma : S_n \bullet \sigma$ is a product of transpositions.

Proof. By Theorem 3.13.3, it is sufficient to show that every cycle is a product of transpositions. By induction on the length of the cycle k, k = 1, 2 are trivial, and $(a_1 a_2 \cdots a_{k+1}) = (a_1 a_{k+1})(a_1 a_2 \cdots a_k)$.

Lemma 3.13.5. For $\sigma : S_n$,

- 1. For $\alpha = (a_1 a_2 \cdots a_k), \ \alpha^{\sigma} = (\sigma^{-1}(a_1) \sigma^{-1}(a_2) \cdots \sigma^{-1}(a_k)).$
- 2. For disjoint cycles $\alpha_1, \ldots, \alpha_m : S_n, \alpha_1^{\sigma}, \ldots, \alpha_m^{\sigma}$ are disjoint cycles, and

$$\left(\prod_{i=1}^{m} \alpha_i\right)^{\sigma} = \prod_{i=1}^{m} \alpha_i^{\sigma}$$

3. τ : S_n is conjugate to σ iff σ, τ are each products of the same number of disjoint cycles of the same lengths.⁵⁵

Proof.

- 1. For $1 \leq i < k$, $\alpha^{\sigma}(\sigma^{-1}(a_i)) = \sigma^{-1}(a_{i+1})$, $\alpha^{\sigma}(\sigma^{-1}(a_k)) = \sigma^{-1}(a_1)$, and for $x \notin \{\sigma^{-1}(a_1), \dots, \sigma^{-1}(a_k)\}, \sigma(x) \notin \{a_1, \dots, a_k\}$, so $\alpha(\sigma(x)) = \sigma(x)$, so $\alpha^{\sigma}(x) = x$.
- 2. By (1), Proposition 3.13.2.2, and Proposition 3.10.3.6.
- 3. By Theorem 3.13.3, (1), and (2).

Theorem 3.13.6. For $n \ge 2$,

- 1. There is a homomorphism $\zeta : S_n \to C_2 \cong (\{1, -1\}, \cdot)$ which, for any transposition $\alpha : S_n, \zeta(\alpha) = -1$.
- 2. If $\theta: S_n \to C_2$ is a non-trivial homomorphism, then $\theta = \zeta$.

⁵⁵Not counting trivial cycles (a).

Proof.

1. Define $\zeta : S_n \to \mathbb{Q}$ by $\zeta(\sigma) = \prod_{i=1}^{n-1} \prod_{j=i+1}^n \frac{\sigma(j) - \sigma(i)}{j - i}$. $\forall \sigma : S_n \bullet \sigma$ is a bijection, so $|\zeta(\sigma)| = 1$, hence $\operatorname{ran} \zeta = \{1, -1\}$. Also, $\forall \sigma, \tau : S_n \bullet$ $\zeta(\sigma\tau) = \prod_{i=1}^{n-1} \prod_{j=i+1}^n \frac{\sigma\tau(j) - \sigma\tau(i)}{j - i}$ $= \left[\prod_{i=1}^{n-1} \prod_{j=i+1}^n \frac{\sigma\tau(j) - \sigma\tau(i)}{\tau(j) - \tau(i)}\right] \cdot \left[\prod_{i=1}^{n-1} \prod_{j=i+1}^n \frac{\tau(j) - \tau(i)}{j - i}\right]$ $= \left[\prod_{i=1}^{n-1} \prod_{j=i+1}^n \frac{\sigma(j) - \sigma(i)}{j - i}\right] \cdot \left[\prod_{i=1}^{n-1} \prod_{j=i+1}^n \frac{\tau(j) - \tau(i)}{j - i}\right] = \zeta(\sigma) \cdot \zeta(\tau)$

as τ is a bijection, so the product is over the same terms.⁵⁶ Hence, ζ is a homomorphism.

For transpositions $\alpha_1, \alpha_2 : S_n$, by Lemma 3.13.5.3 $\exists \sigma : S_n \bullet \alpha_2 = \alpha_1^{\sigma}$. C_2 is Abelian, so $\zeta(\alpha_2) = \zeta(\alpha_1)^{\zeta(\sigma)} = \zeta(\alpha_1)$. It is easy to check that $\zeta(12) = -1$, and the result follows.

2. As before, for transpositions $\alpha_1, \alpha_2 : S_n, \theta(\alpha_1) = \theta(\alpha_2)$.

By Corollary 3.13.4, $\forall \sigma : S_n \bullet \sigma$ is a product of transpositions $\alpha_1, \ldots, \alpha_m$, so $\theta(\sigma) = \theta(\alpha_1)^m$. Therefore, if $\theta(\alpha_1) = 1$ then θ is trivial, otherwise $\theta(\alpha_1) = -1$ and $\theta = \zeta$.

Definition 3.13.7. For $\sigma : S_n$, $\zeta(\sigma)$ is the signature of σ .

Corollary 3.13.8. A product of an even number of transpositions cannot be written as a product of an odd number of transpositions, and vice versa.

Proof. If $\sigma: S_n$ is a product of *m* transpositions, then $\zeta(\sigma) = (-1)^m$. \Box

Definition 3.13.9. For $n \ge 2$, $A_n = \ker \zeta$ is the alternating group on n elements.

By Theorem 3.12.3, $A_n \triangleleft S_n$, and $S_n/A_n \cong C_2$.

⁵⁶Where i < j but $\tau(i) > \tau(j)$, $\frac{\sigma\tau(j) - \sigma\tau(i)}{\tau(j) - \tau(i)} = \frac{\sigma\tau(i) - \sigma\tau(j)}{\tau(i) - \tau(j)}$.

A Appendix

A.1 The Natural Numbers

Definition A.1.1. The set of *natural numbers* \mathbb{N} is defined as follows:

- 1. $\emptyset \in \mathbb{N}$.
- 2. $\forall n : \mathbb{N} \bullet (n \cup \{n\}) \in \mathbb{N}.$
- 3. $\forall S : \mathbb{PN} \bullet (\emptyset \in S \land \forall n : S \bullet (n \cup \{n\}) \in S) \Rightarrow S = \mathbb{N}.$

Note that by this definition, $0 = \emptyset$, #n = n, and "n + 1" = $n \cup \{n\}$.

Definition A.1.2.

- 1. $\mathbb{N}_+ = \mathbb{N} \setminus \{0\}.$
- 2. $_{-}+_{-}: \mathbb{N}^2 \to \mathbb{N}$ is defined as $\forall m, n : \mathbb{N}, n+0 = n, n+1 = (n \cup \{n\}),$ and n + (m+1) = (n+m) + 1.
- 3. $_\cdot_: \mathbb{N}^2 \to \mathbb{N}$ is defined as $\forall m, n : \mathbb{N}, n \cdot 0 = 0$, and $(n+1) \cdot m = (n \cdot m) + m$.
- 4. $_ < _ : \mathbb{N} \leftrightarrow \mathbb{N}$ is defined as m < n iff $m \in n$.

By strong induction on n, + and \cdot are defined for all natural numbers. Note that $\forall n : \mathbb{N}, n = \{k : \mathbb{N} \mid k < n\}$ and $n + 1 = \{k : \mathbb{N} \mid k \leq n\}$. Also, m < n iff $m \subset n$.

We will write m^n to mean a product of n copies of m.

Definition A.1.3. For $S : \mathbb{P} \mathbb{N} \mid S \neq \emptyset$,

1. If $\exists m : \mathbb{N} \bullet \forall n : S \bullet n < m$,⁵⁷ then max $S = \bigcup_{n:S} n$. 2. min $S = \bigcap_{n:S} n$.

Where max S or min S are defined, they are natural numbers. In particular, every non-empty set $S \subseteq \mathbb{N}$ has a least element min $S^{.58}$

 $^{^{57}}$ I.e. S is non-empty and bounded-above.

⁵⁸This is the *well-ordering principle*.

A.2 The Integers

Definition A.2.1. Let $R : \mathbb{N}^2 \leftrightarrow \mathbb{N}^2$ be the equivalence relation generated by $\forall a, b, k : \mathbb{N} \bullet (a, b)R(a + k, b + k).^{59}$

- 1. $\mathbb{Z} = \mathbb{N}^2 / R$ is the set of **integers**.
- 2. $\mathbb{Z}^{\times} = \mathbb{Z} \setminus \{ [(0,0)] \}.$
- 3. $-_{-}: \mathbb{Z} \to \mathbb{Z}$ is defined as $-[(a, b)] = [(b, a)].^{60}$
- 4. $-+-: \mathbb{Z}^2 \to \mathbb{Z}$ is defined as $[(a, b)] + [(c, d)] = [(a + b, c + d)]^{.61}$
- 5. $_\cdot_:\mathbb{Z}^2 \to \mathbb{Z}$ is defined as $[(a, b)] \cdot [(c, d)] = [(ac + bd, ad + bc)]^{.62}$

6.
$$- < -: \mathbb{Z} \leftrightarrow \mathbb{Z}$$
 is defined as $[(a, b)] < [(c, d)]$ iff $a + d < b + c$.⁶³

We will identify $\mathbb{N} \subset \mathbb{Z}$ by the inclusion map $\iota(n : \mathbb{N}) = [(n, 0)]$; i.e. we will write *n* to mean $\iota(n)$. Note that ι commutes with $+, \cdot,$ and $<,^{64}$ and $[(a, b)] = \iota(a) + (-\iota(b))$. We will write a - b to mean a + (-b).

A.3 The Rational Numbers

Definition A.3.1. Let $R : (\mathbb{Z} \times \mathbb{Z}^{\times}) \leftrightarrow (\mathbb{Z} \times \mathbb{Z}^{\times})$ be the equivalence relation generated by $\forall a : \mathbb{Z}, b, k : \mathbb{Z}^{\times} \bullet (a, b) R(ak, bk).^{65}$

- 1. $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^{\times})/R$ is the set of **rational numbers**.
- 2. $\mathbb{Q}^* = \mathbb{Q} \setminus \{ [(0,1)] \}, and \mathbb{Q}_+ = \{ [(a,b)] : \mathbb{Q} \bullet ab > 0 \}.$
- 3. -: $\mathbb{Q} \to \mathbb{Q}$ is defined as -[(a, b)] = [(-a, b)].⁶⁶

4. $-+-: \mathbb{Q}^2 \to \mathbb{Q}$ is defined as $[(a, b)] + [(c, d)] = [(ad + bc, bd)].^{67}$

⁵⁹With equivalence classes $[(a,0)] = \{k : \mathbb{N} \bullet (a+k,k)\}$ and $[(0,b)] = \{k : \mathbb{N} \bullet (k,b+k)\}.$

⁶⁰This is well-defined, as [(b + k, a + k)] = [(b, a)].

⁶¹This is well-defined, as [(a + k, b + k)] + [(c + k', d + k')] = [(a + c + (k + k'), b + d + (k + k'))] = [(a + c, b + d)].

⁶²Convince yourself that this is well-defined.

⁶³This is well-defined, as [(a+k, b+k)] < [(c+k', d+k')] iff a+d+(k+k') < b+c+(k+k') iff a+d < b+c.

⁶⁴I.e. $\iota(m+n) = \iota(m) + \iota(n), \ \iota(m \cdot n) = \iota(m) \cdot \iota(n), \text{ and } \iota(m) < \iota(n) \text{ iff } m < n.$

⁶⁵With equivalence classes $[(0,1)] = \{k : \mathbb{Z}^{\times} \bullet (0,k)\}$ and $[(a,b)] = \{k : \mathbb{Z}^{\times} \bullet (ak,bk)\}$ for a, b coprime.

⁶⁶This is well-defined, as [(-ak, bk)] = [(-a, b)].

⁶⁷Convince yourself that this is well-defined.

5. $_\cdot_: \mathbb{Q}^2 \to \mathbb{Q}$ is defined as $[(a, b)] \cdot [(c, d)] = [(ac, bd)]$.⁶⁸ 6. $_^{-1}: \mathbb{O}^* \to \mathbb{O}^*$ is defined as $[(a, b)]^{-1} = [(b, a)]^{.69}$ 7. $_ < _ : \mathbb{O} \leftrightarrow \mathbb{O}$ is defined as [(a, b)] < [(c, d)] iff $abd^2 < b^2cd$.⁷⁰

We will identify $\mathbb{Z} \subset \mathbb{Q}$ by the inclusion map $\iota(a : \mathbb{Z}) = [(a, 1)]$. Note that ι commutes with $+, \cdot, \text{ and } <, \text{ and } [(a, b)] = \iota(a) \cdot \iota(b)^{-1}$. We will write $\frac{a}{b}$ to mean $a \cdot b^{-1}$, and a^{-n} to mean $(a^{-1})^n$.

The Real Numbers A.4

Definition A.4.1. Let $P(s : \mathbb{P}\mathbb{Q}, m : \mathbb{Q})$ be the predicate $\forall x : s \bullet x \leq m$,⁷¹

$$B = \{ s : \mathbb{P}\mathbb{Q} \mid s \neq \emptyset \land (\exists m : \mathbb{Q} \bullet P(s, m)) \}$$

and $R: B \leftrightarrow B$ be the equivalence relation defined by

$$\forall s, t : B \mid (\forall m : \mathbb{Q} \bullet B(s, m) \Leftrightarrow B(t, m)) \bullet sRt$$

1. $\mathbb{R} = B/R$ is the set of real numbers. 2. $\mathbb{R}^* = \mathbb{R} \setminus \{ [\{0\}] \}, and \mathbb{R}_+ = \{ [s] : \mathbb{R} \mid \neg P(s, 0) \}.$ 3. -: $\mathbb{R} \to \mathbb{R}$ is defined as $-[s] = [\{m : \mathbb{Q} \mid P(s, m) \bullet -m\}]^{.72}$ 4. $-+-: \mathbb{R}^2 \to \mathbb{R}$ is defined as $[s] + [t] = [\{x : s, y : t \bullet x + y\}].$ 5. $_-_: \mathbb{R}^2 \to \mathbb{R}$ is defined as [s] - [t] = [s] + (-[t]). 6. $_\cdot_:\mathbb{R}^2 \to \mathbb{R}$ is defined for $[s], [t]:\mathbb{R}_+$ as
$$\begin{split} & [s] \cdot [t] = [\{ x : s, y : t \mid x, y > 0 \bullet xy \}], \\ & \pm [s] \cdot \pm [t] = \pm ([s] \cdot [t]),^{73} \ and \ [\{0\}] \cdot [s] = [s] \cdot [\{0\}] = [\{0\}]. \end{split}$$
7. $_^{-1}: \mathbb{R}^* \to \mathbb{R}^*$ is defined for $[s]: \mathbb{R}_+$ as $[s]^{-1} = [\{ m : \mathbb{Q} \mid P(s, m) \bullet m^{-1} \}], and (-[s])^{-1} = -([s]^{-1}).$ 8. $- < -: \mathbb{R} \leftrightarrow \mathbb{R}$ is defined as [s] < [t] iff $[s] \neq [t]$ and $\forall m : \mathbb{Q} \bullet P(t, m) \Rightarrow P(s, m).$

We will identify $\mathbb{Q} \subset \mathbb{R}$ by the inclusion map $\iota(a : \mathbb{Q}) = [\{a\}]$. Note that ι commutes with $+, \cdot, -1$ and <.

⁶⁸This is well-defined, as $[(ak, bk)] \cdot [(ck', dk')] = [(ac(kk'), bd(kk'))] = [(ac, bd)].$

⁷¹I.e. s is "bounded above" by m.

⁷²These are all well-defined, as $[s] = [s'] \Rightarrow (P(s, m) \Leftrightarrow P(s', m)).$ ⁷³I.e. $[s] \cdot -[t] = -[s] \cdot [t] = -([s] \cdot [t])$, and $-[s] \cdot -[t] = [s] \cdot [t]$.

⁶⁹This is well-defined, as [(bk, ak)] = [(b, a)]. ⁷⁰This is well-defined, as [(ak, bk)] < [(ck', dk')] iff $abd^2(kk')^2 < b^2c(kk')^2$ iff $abd^2 < b^2c(kk')^2$ $b^2 cd$.

Definition A.4.2. If $S : \mathbb{PR} \mid S \neq \emptyset$,

1. If
$$\exists m : \mathbb{R} \bullet P(S, m)$$
,⁷⁴ sup $S = \left[\bigcup_{[s]:S} s\right]$ is the **supremum** of S.

2. If $\exists m : \mathbb{R} \bullet P(\{x : S \bullet -x\}, m)$, inf $S = -\sup\{x : S \bullet -x\}$ is the *infimum* of S.

In particular, every non-empty bounded-above subset S of $\mathbb R$ has a least upper bound $\sup S.^{75}$

A.5 The Complex Numbers

Definition A.5.1.

1. $\mathbb{C} = \mathbb{R}^2$ is the set of complex numbers.

$$2. \mathbb{C}^* = \mathbb{C} \setminus \{(0,0)\}.$$

3. Re, Im : $\mathbb{C} \to \mathbb{R}$ are defined as Re(a, b) = a, and Im(a, b) = b.

- 4. $_^* : \mathbb{C} \to \mathbb{C}$ is defined as $(a, b)^* = (a, -b)$.
- 5. $|\cdot| : \mathbb{C} \to \mathbb{R}$ is defined as $|(a, b)| = \sqrt{a^2 + b^2}$.⁷⁶

6.
$$--: \mathbb{C} \to \mathbb{C}$$
 is defined as $-(a, b) = (-a, -b)$.

- 7. $_+_: \mathbb{C}^2 \to \mathbb{C}$ is defined as (a, b) + (c, d) = (a + c, b + d).
- 8. $--: \mathbb{C}^2 \to \mathbb{C}$ is defined as (a, b) (c, d) = (a, b) + (-(c, d)).

9.
$$_\cdot_: \mathbb{C}^2 \to \mathbb{C}$$
 is defined as $(a, b) \cdot (c, d) = (ac - bd, ad + bc).$

10.
$$_^{-1} : \mathbb{C}^* \to \mathbb{C}^*$$
 is defined as $(a, b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$

< is not defined.

We will identify $\mathbb{R} \subset \mathbb{C}$ by the inclusion map $\iota(a:\mathbb{R}) = (a,0)$. Note that ι commutes with $+, \cdot,$ and $^{-1}$. We define $i \in \mathbb{C}$ as i = (0,1).

⁷⁴Extend P to $(S : \mathbb{PR}, m : \mathbb{R})$. I.e. S is a non-empty, bounded-above set of real numbers.

⁷⁵Note that $\forall [s], [t] : \mathbb{R} \bullet (\sup s = \sup t) \Leftrightarrow ([s] = [t]), \text{ and so } \mathbb{R} = \{ s : B \bullet \sup s \}.$ ⁷⁶For $x : \mathbb{R} \mid x \ge 0$, we can define \sqrt{x} e.g. as $\sup\{ y : \mathbb{R} \mid y^2 \le x \}.$

Arithmetic A.6

Proposition A.6.1. Over \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , where they are defined,

- 1. a + 0 = a, and $1 \cdot a = a$.
- 2. $-a = (-1) \cdot a$, -(-a) = a, a + (-a) = 0, $(a^{-1})^{-1} = a$, and $a \cdot a^{-1} = 1$.
- 3. $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$.
- 4. +, \cdot are associative⁷⁷ and commutative,⁷⁸ and \cdot distributes over +.⁷⁹
- 5. $|_|$ obeys the triangle inequality, i.e. $|a + b| \leq |a| + |b|$.
- 6. a > b iff b < a, $a \leq b$ iff $(a < b) \lor (a = b)$, and $a \geq b$ iff $b \leq a$.
- 7. < is transitive and antisymmetric,⁸⁰ and <, =, > are a trichotomy.⁸¹
- 8. If a < b then -b < -a, a + c < b + c, for d > 0, ad < bd, and if a > 0 then $b^{-1} < a^{-1}$. Also, $a \leq b$ iff $\exists c \ge 0 \bullet a + c = b$.

Proof. Omitted.

Definition A.6.2. For a non-empty finite set or sequence $S = (x_1, \ldots, x_n)$ of numbers (e.g. natural numbers, integers...),

- 1. $\sum S$ is the **sum** of the elements of S, i.e. $\sum S = x_1 + \cdots + x_n$.
- 2. $\prod S$ is the **product** of the elements of S, i.e. $\prod S = x_1 \cdots x_n$.
- 3. $\sum \emptyset = 0$, and $\prod \emptyset = 1.^{82}$

These are all defined, by induction on n, and associativity and commutativity⁸³ of + and \cdot .

We will write $\sum_{variables} expression$ to mean $\sum (variables \bullet expression)$.⁸⁴ In particular, $\sum_{k=1}^{n} expression$ means $\sum_{k:\{1,\dots,n\}} expression$.

(Similarly for Π).

- ⁷⁷I.e. (a + b) + c = a + (b + c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- ⁷⁸I.e. m + n = n + m and $m \cdot n = n \cdot m$.
- ⁷⁹I.e. $a \cdot (b+c) = a \cdot b + a \cdot c$.
- ⁸⁰I.e. $(a < b) \Rightarrow \neg (b < a)$.
- ⁸¹I.e. exactly one of a < b, a = b, a > b is true. Also, $((a \le b) \land (a \ge b)) \Rightarrow (a = b)$. ⁸²Hence, if $S = U \cup V$ and $U \cap V = \emptyset$, then $\sum S = \sum U + \sum V$ and $\prod S = \prod U \cdot \prod V$.
- ⁸³I.e. the sum or product of a set S is independent of how it is enumerated.

⁸⁴We use a sequence rather than a set, as e.g. $\sum(1,1) = 2 \neq \sum\{1,1\} = \sum\{1\} = 1$.