Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Find the number of combinations of $5$ items from a set of $8$.
Hint: ${}^n \mathrm{C}_r = \dfrac{n!}{r! \, (n-r)!}$
${}^{8} \mathrm{C}_{5} = \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}!}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~}! \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A3}}\hspace{54px}}~}!}$ ${}^{8} \mathrm{C}_{5} = \dfrac{8!}{5! \times 3!}$
Cancel and calculate. Hint: Multiply the numbers down from $n$ in the numerator, and down from $r$ in the denominator.
${}^{8} \mathrm{C}_{5} = \dfrac{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B1}}\hspace{35px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B2}}\hspace{35px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B3}}\hspace{35px}}~}}{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{35px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{35px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C3}}\hspace{35px}}~}} = \dfrac{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{80px}}~}}{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D2}}\hspace{80px}}~}} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{80px}}~}$ ${}^{8} \mathrm{C}_{5} = \dfrac{8 \times 7 \times 6}{3 \times 2 \times 1} = \dfrac{336}{6} = 56$