Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the determinant of the matrix $A = \begin{pmatrix} -3 & 0 & -2 \\ -3 & 5 & 2 \\ 5 & -5 & 5 \end{pmatrix}$ by expansion of cofactors.
Expand. Hint: Multiply each element from the first row by its minor. The minor is the determinant of the matrix found by deleting that row and column.
$\operatorname{det} A = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Aa}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab22}}\hspace{35px}}~} \end{pmatrix} - \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ac}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad22}}\hspace{35px}}~} \end{pmatrix} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ae}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af22}}\hspace{35px}}~} \end{pmatrix}$ $\operatorname{det} A = -3 \operatorname{det} \begin{pmatrix} 5 & 2 \\ -5 & 5 \end{pmatrix} - 0 \operatorname{det} \begin{pmatrix} -3 & 2 \\ 5 & 5 \end{pmatrix} + -2 \operatorname{det} \begin{pmatrix} -3 & 5 \\ 5 & -5 \end{pmatrix}$
Calculate the first minor. Hint: The determinant of a $2{\times}2$ matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $ad - bc$.
$\operatorname{det} \begin{pmatrix} 5 & 2 \\ -5 & 5 \end{pmatrix}= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B1}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B2}}\hspace{54px}}~} - \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B3}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B4}}\hspace{54px}}~}$ $\operatorname{det} \begin{pmatrix} 5 & 2 \\ -5 & 5 \end{pmatrix}= 5 \times 5 - 2 \times -5$
$= \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{54px}}~} - \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{54px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{54px}}~}$ $= 25 - -10 = 35$
Calculate the second minor.
$\operatorname{det} \begin{pmatrix} -3 & 2 \\ 5 & 5 \end{pmatrix}= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D2}}\hspace{54px}}~} - \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D3}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D4}}\hspace{54px}}~}$ $\operatorname{det} \begin{pmatrix} -3 & 2 \\ 5 & 5 \end{pmatrix}= -3 \times 5 - 2 \times 5$
$= \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{E1}}\hspace{54px}}~} - \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{E2}}\hspace{54px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{ER}}\hspace{54px}}~}$ $= -15 - 10 = -25$
Calculate the third minor.
$\operatorname{det} \begin{pmatrix} -3 & 5 \\ 5 & -5 \end{pmatrix}= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F1}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F2}}\hspace{54px}}~} - \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F3}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F4}}\hspace{54px}}~}$ $\operatorname{det} \begin{pmatrix} -3 & 5 \\ 5 & -5 \end{pmatrix}= -3 \times -5 - 5 \times 5$
$= \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{G1}}\hspace{54px}}~} - \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{G2}}\hspace{54px}}~} = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{GR}}\hspace{54px}}~}$ $= 15 - 25 = -10$
Therefore, Hint: Substitute the minors into the first step.
$\operatorname{det} A = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H1a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H1b}}\hspace{54px}}~} - \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H2a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H2b}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H3a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H3b}}\hspace{54px}}~}$ $\operatorname{det} A = -3 \times 35 - 0 \times -25 + -2 \times -10$
$= \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J1}}\hspace{54px}}~} - \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J2}}\hspace{54px}}~} + \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J3}}\hspace{54px}}~} = \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{JR}}\hspace{54px}}~}$ $= -105 - 0 + 20 = -85$