Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the determinant of the matrix $A = \begin{pmatrix} 4 & -1 & -5 \\ 4 & 4 & 3 \\ 4 & -1 & 3 \end{pmatrix}$ using Sarrus' rule.
Copy the columns. Hint: Copy the first two columns of $A$.
$\begin{pmatrix} 4 & -1 & -5 & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{35px}}~} \\ 4 & 4 & 3 & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A3}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A4}}\hspace{35px}}~} \\ 4 & -1 & 3 & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A5}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A6}}\hspace{35px}}~} \end{pmatrix}$ $\begin{pmatrix} 4 & -1 & -5 & 4 & -1 \\ 4 & 4 & 3 & 4 & 4 \\ 4 & -1 & 3 & 4 & -1 \end{pmatrix}$
Multiply the $\searrow$ diagonals.
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ba1}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ba2}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ba3}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BaR}}\hspace{54px}}~}$ $4 \times 4 \times 3 = 48$
$\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bb1}}\hspace{54px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bb2}}\hspace{54px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bb3}}\hspace{54px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BbR}}\hspace{54px}}~}$ $-1 \times 3 \times 4 = -12$
$\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bc1}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bc2}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bc3}}\hspace{54px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BcR}}\hspace{54px}}~}$ $-5 \times 4 \times -1 = 20$
Hint: Add together the results from the $\searrow$ diagonals.
So the total is ${\class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BT}}\hspace{54px}}~}}$ So the total is ${56}$
Multiply the $\swarrow$ diagonals.
$\class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ca1}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ca2}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ca3}}\hspace{54px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CaR}}\hspace{54px}}~}$ $-5 \times 4 \times 4 = -80$
$\class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cb1}}\hspace{54px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cb2}}\hspace{54px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cb3}}\hspace{54px}}~} = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CbR}}\hspace{54px}}~}$ $4 \times 3 \times -1 = -12$
$\class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cc1}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cc2}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cc3}}\hspace{54px}}~} = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CcR}}\hspace{54px}}~}$ $-1 \times 4 \times 3 = -12$
Hint: Add together the results from the $\swarrow$ diagonals.
So the total is ${\class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CT}}\hspace{54px}}~}}$ So the total is ${-104}$
Therefore, Hint: The determinant is the total of the $\searrow$ diagonals, minus the total of the $\swarrow$ diagonals.
$\operatorname{det} A = \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{54px}}~} - \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D2}}\hspace{54px}}~} = \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{54px}}~}$ $\operatorname{det} A = 56 - -104 = 160$