Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Find $P(1 \le X \le 5)$, where $X$ is a Binomial variable with parameters $n = 9$, $p = 0.41$.
Find $1 - p$.
$1 - p = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}$ $1 - p = 0.59$
Hint: For a Binomial distribution, $P(X = r) = {}^n \mathrm{C}_r \times p^r \times (1-p)^{n-r}$.
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c1}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c2}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c3}}\hspace{100px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c4R}}\hspace{100px}}~}$ $P(X = 1) = 9 \times 0.41 \times 0.01468304 = 0.05418043$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c1}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c2}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c3}}\hspace{100px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c4R}}\hspace{100px}}~}$ $P(X = 2) = 36 \times 0.1681 \times 0.02488651 = 0.15060323$
$P(X = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c0}}\hspace{35px}}~}) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c1}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c2}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c3}}\hspace{100px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c4R}}\hspace{100px}}~}$ $P(X = 3) = 84 \times 0.068921 \times 0.04218053 = 0.24419846$
$P(X = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c0}}\hspace{35px}}~}) = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c1}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c2}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c3}}\hspace{100px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c4R}}\hspace{100px}}~}$ $P(X = 4) = 126 \times 0.02825761 \times 0.07149243 = 0.25454586$
$P(X = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c0}}\hspace{35px}}~}) = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c1}}\hspace{100px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c2}}\hspace{100px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c3}}\hspace{100px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c4R}}\hspace{100px}}~}$ $P(X = 5) = 126 \times 0.01158562 \times 0.12117361 = 0.1768878$
Therefore, Hint: Add together the individual probabilities.
$P(1 \le X \le 5) = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $P(1 \le X \le 5) = 0.88041578$