Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Find $P(2 \le X \le 4)$, where $X$ is a Poisson variable with parameter $\lambda = 4.19$.
Hint: For a Poisson distribution, $P(X = r) = \mathrm{e}^{-\lambda} \dfrac{\lambda^r}{r!}$.
$P(X = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c0}}\hspace{35px}}~}) = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c2}}\hspace{100px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c3}}\hspace{100px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c4R}}\hspace{100px}}~}$ $P(X = 2) = 0.01514628 \times \dfrac{17.5561}{2} = 0.13295485$
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c2}}\hspace{100px}}~}}{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c3}}\hspace{100px}}~}} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c4R}}\hspace{100px}}~}$ $P(X = 3) = 0.01514628 \times \dfrac{73.560059}{6} = 0.1856936$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c2}}\hspace{100px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c3}}\hspace{100px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c4R}}\hspace{100px}}~}$ $P(X = 4) = 0.01514628 \times \dfrac{308.21664721}{24} = 0.19451405$
$P(2 \le X \le 4) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{100px}}~}$ $P(2 \le X \le 4) = 0.51316249$