Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Find the sample standard deviation of the dataset
$x = 74$, $70$, $72$, $76$, $73$, $82$, $80$, $74$, $77$, $75$.
Find the sample mean. Hint: The sample mean is given by the formula $\bar{x} = \dfrac{\sum x}{n}$.
$\bar{x} = \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{AR}}\hspace{54px}}~}$ $\bar{x} = \dfrac{753}{10} = \dfrac{753}{10}$
Complete the table.
$x$$x - \bar{x}$$(x - \bar{x})^2$
$74$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1}}\hspace{80px}}~}$
$70$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1}}\hspace{80px}}~}$
$72$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1}}\hspace{80px}}~}$
$76$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c1}}\hspace{80px}}~}$
$73$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c1}}\hspace{80px}}~}$
$82$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c1}}\hspace{80px}}~}$
$80$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c1}}\hspace{80px}}~}$
$74$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c1}}\hspace{80px}}~}$
$77$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c1}}\hspace{80px}}~}$
$75$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c1}}\hspace{80px}}~}$
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{80px}}~}$
$x$$x - \bar{x}$$(x - \bar{x})^2$
$74$$-\dfrac{13}{10}$$\dfrac{169}{100}$
$70$$-\dfrac{53}{10}$$\dfrac{2809}{100}$
$72$$-\dfrac{33}{10}$$\dfrac{1089}{100}$
$76$$\dfrac{7}{10}$$\dfrac{49}{100}$
$73$$-\dfrac{23}{10}$$\dfrac{529}{100}$
$82$$\dfrac{67}{10}$$\dfrac{4489}{100}$
$80$$\dfrac{47}{10}$$\dfrac{2209}{100}$
$74$$-\dfrac{13}{10}$$\dfrac{169}{100}$
$77$$\dfrac{17}{10}$$\dfrac{289}{100}$
$75$$-\dfrac{3}{10}$$\dfrac{9}{100}$
$\dfrac{1181}{10}$
Find the sample variance. Hint: The sample variance is given by the formula $s^2 = \dfrac{\sum (x - \bar{x})^2}{n-1}$.
$s^2 = \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{80px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{80px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $s^2 = \dfrac{\dfrac{1181}{10}}{9} = \dfrac{1181}{90}$
Therefore, Hint: The standard deviation is the square root of the variance.
$s = \sqrt{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{100px}}~}$ $s = \sqrt{\dfrac{1181}{90}} = 3.6224608$