Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the population standard deviation of the dataset
$x = 348.49$, $371.23$, $350.15$, $353.03$, $371.03$, $359.17$, $352.69$, $367.06$, $370.72$, $348.49$, $357.22$, $369.44$, $373.74$.
Find the population mean. Hint: The population mean is given by the formula $\mu = \dfrac{\sum x}{n}$.
$\mu = \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{AR}}\hspace{54px}}~}$ $\mu = \dfrac{4692.46}{13} = 360.95846154$
Complete the table.
$x$$x - \mu$$(x - \mu)^2$
$348.49$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1}}\hspace{80px}}~}$
$371.23$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1}}\hspace{80px}}~}$
$350.15$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1}}\hspace{80px}}~}$
$353.03$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c1}}\hspace{80px}}~}$
$371.03$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c1}}\hspace{80px}}~}$
$359.17$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c1}}\hspace{80px}}~}$
$352.69$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c1}}\hspace{80px}}~}$
$367.06$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c1}}\hspace{80px}}~}$
$370.72$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c1}}\hspace{80px}}~}$
$348.49$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c1}}\hspace{80px}}~}$
$357.22$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r10c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r10c1}}\hspace{80px}}~}$
$369.44$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r11c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r11c1}}\hspace{80px}}~}$
$373.74$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r12c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r12c1}}\hspace{80px}}~}$
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{80px}}~}$
$x$$x - \mu$$(x - \mu)^2$
$348.49$$-12.46846154$$155.46253314$
$371.23$$10.27153846$$105.50450237$
$350.15$$-10.80846154$$116.82284083$
$353.03$$-7.92846154$$62.86050237$
$371.03$$10.07153846$$101.43588698$
$359.17$$-1.78846154$$3.19859467$
$352.69$$-8.26846154$$68.36745621$
$367.06$$6.10153846$$37.2287716$
$370.72$$9.76153846$$95.28763314$
$348.49$$-12.46846154$$155.46253314$
$357.22$$-3.73846154$$13.97609467$
$369.44$$8.48153846$$71.93649467$
$373.74$$12.78153846$$163.36772544$
$1150.91156923$
Find the population variance. Hint: The population variance is given by the formula $\sigma^2 = \dfrac{\sum (x - \mu)^2}{n}$.
$\sigma^2 = \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{80px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{80px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $\sigma^2 = \dfrac{1150.91156923}{13} = 88.53165917$
Therefore, Hint: The standard deviation is the square root of the variance.
$\sigma = \sqrt{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{100px}}~}$ $\sigma = \sqrt{88.53165917} = 9.40912638$