ZarankiewiczDB,

an online database of Zarankiewicz numbers. home; recent; tables; submit; theorems & references

Bound for z(14,22)

Searching for matrices of weight greater than 73, all but 13 scaffolds were eliminated without search.

Scaffold: $p=5$, $q=2$, $\mathbf{m}=(2,2,2,2,2)$, $\mathbf{n}=(5,5)$, $m_O=1$, $n_O=6$.

(0.001361067 seconds, score = 0, 0 recursive calls, max depth = 0)

Scaffold: $p=5$, $q=2$, $\mathbf{m}=(2,2,2,2,2)$, $\mathbf{n}=(4,4)$, $m_O=1$, $n_O=8$.

(0.001696025 seconds, score = 0, 0 recursive calls, max depth = 0)

Scaffold: $p=5$, $q=2$, $\mathbf{m}=(2,2,2,2,2)$, $\mathbf{n}=(5,4)$, $m_O=1$, $n_O=7$.

(3.877008112 seconds, score = 0, 24158 recursive calls, max depth = 33)

Scaffold: $p=5$, $q=3$, $\mathbf{m}=(2,2,2,2,2)$, $\mathbf{n}=(4,4,4)$, $m_O=0$, $n_O=4$.

(1.290646157 seconds, score = 0, 10165 recursive calls, max depth = 27)

Scaffold: $p=5$, $q=2$, $\mathbf{m}=(2,2,2,2,1)$, $\mathbf{n}=(4,4)$, $m_O=2$, $n_O=8$.

(0.165814929 seconds, score = 0, 986 recursive calls, max depth = 28)

Scaffold: $p=5$, $q=2$, $\mathbf{m}=(2,2,2,2,1)$, $\mathbf{n}=(5,4)$, $m_O=2$, $n_O=7$.

(3.1233E-4 seconds, score = 0, 0 recursive calls, max depth = 0)

Scaffold: $p=5$, $q=3$, $\mathbf{m}=(2,2,2,2,2)$, $\mathbf{n}=(5,4,4)$, $m_O=0$, $n_O=3$.

(0.072071171 seconds, score = 0, 497 recursive calls, max depth = 23)

Scaffold: $p=5$, $q=3$, $\mathbf{m}=(2,2,2,2,1)$, $\mathbf{n}=(4,4,4)$, $m_O=1$, $n_O=4$.

(3.519558212 seconds, score = 0, 27673 recursive calls, max depth = 26)

Scaffold: $p=5$, $q=3$, $\mathbf{m}=(2,2,2,2,1)$, $\mathbf{n}=(5,4,4)$, $m_O=1$, $n_O=3$.

(2.47238E-4 seconds, score = 0, 0 recursive calls, max depth = 0)

Scaffold: $p=5$, $q=3$, $\mathbf{m}=(3,2,2,2,1)$, $\mathbf{n}=(4,4,4)$, $m_O=0$, $n_O=4$.

(14.562306941 seconds, score = 0, 94009 recursive calls, max depth = 28)

Scaffold: $p=5$, $q=3$, $\mathbf{m}=(3,2,2,2,1)$, $\mathbf{n}=(5,4,4)$, $m_O=0$, $n_O=3$.

(0.546564717 seconds, score = 0, 3052 recursive calls, max depth = 25)

Scaffold: $p=6$, $q=2$, $\mathbf{m}=(2,2,2,2,2,1)$, $\mathbf{n}=(5,4)$, $m_O=0$, $n_O=6$.

(15.619051583 seconds, score = 0, 87394 recursive calls, max depth = 32)

Scaffold: $p=6$, $q=2$, $\mathbf{m}=(2,2,2,2,2,1)$, $\mathbf{n}=(4,4)$, $m_O=0$, $n_O=7$.

(7.449155968 seconds, score = 0, 40368 recursive calls, max depth = 30)

upper bound = 73, submitted by Andrew Kay on April 22nd, 2016 (link)