ZarankiewiczDB,

an online database of Zarankiewicz numbers. home; recent; tables; submit; theorems & references

z(24,24) = 122

By Damásdi, Héger and Szőnyi's recursive bound with $\alpha=1$ and $\beta=6$. [DHS13, p. 17]

upper bound = 122, submitted on April 24th, 2016 (link)

By deleting 7 rows and 7 columns from the finite projective plane of order 5.

lower bound = 122, submitted on April 24th, 2016 (link)

11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111
11111

A construction given by Füredi and Simonovits. Rows and columns represent ordered pairs $(a,b),~(x,y) \in \mathbb{Z}_5 \times \mathbb{Z}_5 - (0,0)$, and a 1 indicates $ax + by \equiv 1 \pmod{5}$. [FS13, p. 27]

lower bound = 120, submitted on April 23rd, 2016 (link, raw)

Submit a result or comment?