Formulaic Maths Problems
- get another problem:
level 1
,
level 2
,
level 3
-
link to this problem
Loading, please wait...
Find the determinant of the matrix $A = \begin{pmatrix} 3 & -7 \\ 4 & -7 \end{pmatrix}$.
Substitute the values.
Hint: The determinant of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $\operatorname{det} A = ad - bc$.
$\operatorname{det} A = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~} - \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A3}}\hspace{54px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A4}}\hspace{54px}}~}$
$\operatorname{det} A = [3] \times [-7] - [-7] \times [4]$
Therefore,
$\operatorname{det} A = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B1}}\hspace{54px}}~} - \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B2}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{54px}}~}$
$\operatorname{det} A = [-21] - [-28] = [7]$