Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Let $A = \begin{pmatrix} -1 & 4 \\ 3 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} -3 & 4 \\ 3 & 0 \end{pmatrix}$. Find $AB$.
Row 1, column 1: Hint: Row 1 of $A$ is $\begin{pmatrix} -1 & 4 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -3 \\ 3 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a0}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b0}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a1}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b1}}\hspace{40px}}~}$ $[-1] \times [-3] + [4] \times [3]$
$= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p0}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p1}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0R}}\hspace{54px}}~}$ $= [3] + [12] = [15]$
Row 1, column 2: Hint: Row 1 of $A$ is $\begin{pmatrix} -1 & 4 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a0}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b0}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a1}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b1}}\hspace{40px}}~}$ $[-1] \times [4] + [4] \times [0]$
$= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p0}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p1}}\hspace{54px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1R}}\hspace{54px}}~}$ $= [-4] + [0] = [-4]$
Row 2, column 1: Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 3 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -3 \\ 3 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a0}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b0}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a1}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b1}}\hspace{40px}}~}$ $[3] \times [-3] + [3] \times [3]$
$= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p0}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p1}}\hspace{54px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0R}}\hspace{54px}}~}$ $= [-9] + [9] = [0]$
Row 2, column 2: Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 3 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a0}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b0}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a1}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b1}}\hspace{40px}}~}$ $[3] \times [4] + [3] \times [0]$
$= \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p0}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p1}}\hspace{54px}}~} = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1R}}\hspace{54px}}~}$ $= [12] + [0] = [12]$
Therefore,
$AB = \begin{pmatrix} \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c0}}\hspace{54px}}~} & \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c1}}\hspace{54px}}~} \\ \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c0}}\hspace{54px}}~} & \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c1}}\hspace{54px}}~} \end{pmatrix}$ $AB = \begin{pmatrix} [15] & [-4] \\ [0] & [12] \end{pmatrix}$