Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Write out the truth table for $\bigl(P \Leftrightarrow \left(P \Leftrightarrow Q\right)\bigr) \land Q$.
Hint: $\land$ is AND. $\lor$ is OR. $\lnot$ is NOT. $\Rightarrow$ is IMPLIES. $\Leftrightarrow$ is IFF. $\oplus$ is XOR.
$C_1$$C_2$
$P$$Q$$P \Leftrightarrow Q$$P \Leftrightarrow C_1$$C_2 \land Q$
$\mathsf{T}$$\mathsf{T}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2}}\hspace{35px}}~}$
$\mathsf{T}$$\mathsf{F}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2}}\hspace{35px}}~}$
$\mathsf{F}$$\mathsf{T}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c2}}\hspace{35px}}~}$
$\mathsf{F}$$\mathsf{F}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c0}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c1}}\hspace{35px}}~}$$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c2}}\hspace{35px}}~}$
$C_1$$C_2$
$P$$Q$$P \Leftrightarrow Q$$P \Leftrightarrow C_1$$C_2 \land Q$
$\mathsf{T}$$\mathsf{T}$$[\mathsf{T}]$$[\mathsf{T}]$$[\mathsf{T}]$
$\mathsf{T}$$\mathsf{F}$$[\mathsf{F}]$$[\mathsf{F}]$$[\mathsf{F}]$
$\mathsf{F}$$\mathsf{T}$$[\mathsf{F}]$$[\mathsf{T}]$$[\mathsf{T}]$
$\mathsf{F}$$\mathsf{F}$$[\mathsf{T}]$$[\mathsf{F}]$$[\mathsf{F}]$