Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find $P(1 < X \le 5)$, where $X$ is a Poisson variable with parameter $\lambda = 4.3$.
Hint: For a Poisson distribution, $P(X = r) = \mathrm{e}^{-\lambda} \dfrac{\lambda^r}{r!}$.
$P(X = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c0}}\hspace{35px}}~}) = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c2}}\hspace{100px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c3}}\hspace{100px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c4R}}\hspace{100px}}~}$ $P(X = [2]) = [0.01356856] \times \dfrac{[18.49]}{[2]} = [0.12544133]$
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c2}}\hspace{100px}}~}}{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c3}}\hspace{100px}}~}} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c4R}}\hspace{100px}}~}$ $P(X = [3]) = [0.01356856] \times \dfrac{[79.507]}{[6]} = [0.17979924]$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c2}}\hspace{100px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c3}}\hspace{100px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c4R}}\hspace{100px}}~}$ $P(X = [4]) = [0.01356856] \times \dfrac{[341.8801]}{[24]} = [0.19328418]$
$P(X = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c0}}\hspace{35px}}~}) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c2}}\hspace{100px}}~}}{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c3}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c4R}}\hspace{100px}}~}$ $P(X = [5]) = [0.01356856] \times \dfrac{[1470.08443]}{[120]} = [0.16622439]$
Therefore, Hint: Add together the individual probabilities.
$P(1 < X \le 5) = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{100px}}~}$ $P(1 < X \le 5) = [0.66474914]$