Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the population standard deviation of the dataset
$x = 29$, $17$, $24$, $25$, $20$, $33$, $29$, $20$, $31$, $29$.
Find the population mean. Hint: The population mean is given by the formula $\mu = \dfrac{\sum x}{n}$.
$\mu = \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{AR}}\hspace{54px}}~}$ $\mu = \dfrac{[257]}{[10]} = [\dfrac{257}{10}]$
Complete the table.
$x$$x - \mu$$(x - \mu)^2$
$29$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1}}\hspace{80px}}~}$
$17$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1}}\hspace{80px}}~}$
$24$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1}}\hspace{80px}}~}$
$25$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c1}}\hspace{80px}}~}$
$20$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c1}}\hspace{80px}}~}$
$33$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c1}}\hspace{80px}}~}$
$29$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c1}}\hspace{80px}}~}$
$20$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c1}}\hspace{80px}}~}$
$31$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c1}}\hspace{80px}}~}$
$29$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c1}}\hspace{80px}}~}$
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{80px}}~}$
$x$$x - \mu$$(x - \mu)^2$
$29$$[\dfrac{33}{10}]$$[\dfrac{1089}{100}]$
$17$$[-\dfrac{87}{10}]$$[\dfrac{7569}{100}]$
$24$$[-\dfrac{17}{10}]$$[\dfrac{289}{100}]$
$25$$[-\dfrac{7}{10}]$$[\dfrac{49}{100}]$
$20$$[-\dfrac{57}{10}]$$[\dfrac{3249}{100}]$
$33$$[\dfrac{73}{10}]$$[\dfrac{5329}{100}]$
$29$$[\dfrac{33}{10}]$$[\dfrac{1089}{100}]$
$20$$[-\dfrac{57}{10}]$$[\dfrac{3249}{100}]$
$31$$[\dfrac{53}{10}]$$[\dfrac{2809}{100}]$
$29$$[\dfrac{33}{10}]$$[\dfrac{1089}{100}]$
$[\dfrac{2581}{10}]$
Find the population variance. Hint: The population variance is given by the formula $\sigma^2 = \dfrac{\sum (x - \mu)^2}{n}$.
$\sigma^2 = \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{80px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{80px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $\sigma^2 = \dfrac{[\dfrac{2581}{10}]}{[10]} = [\dfrac{2581}{100}]$
Therefore, Hint: The standard deviation is the square root of the variance.
$\sigma = \sqrt{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{100px}}~}$ $\sigma = \sqrt{[\dfrac{2581}{100}]} = [5.08035432]$