Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the population standard deviation of the dataset
$x = 29$, $37$, $30$, $30$, $38$, $34$, $25$, $28$, $26$, $26$.
Find the population mean. Hint: The population mean is given by the formula $\mu = \dfrac{\sum x}{n}$.
$\mu = \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{AR}}\hspace{54px}}~}$ $\mu = \dfrac{[303]}{[10]} = [\dfrac{303}{10}]$
Complete the table.
$x$$x - \mu$$(x - \mu)^2$
$29$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1}}\hspace{80px}}~}$
$37$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1}}\hspace{80px}}~}$
$30$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1}}\hspace{80px}}~}$
$30$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c1}}\hspace{80px}}~}$
$38$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c1}}\hspace{80px}}~}$
$34$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c1}}\hspace{80px}}~}$
$25$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c1}}\hspace{80px}}~}$
$28$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c1}}\hspace{80px}}~}$
$26$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c1}}\hspace{80px}}~}$
$26$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c1}}\hspace{80px}}~}$
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{80px}}~}$
$x$$x - \mu$$(x - \mu)^2$
$29$$[-\dfrac{13}{10}]$$[\dfrac{169}{100}]$
$37$$[\dfrac{67}{10}]$$[\dfrac{4489}{100}]$
$30$$[-\dfrac{3}{10}]$$[\dfrac{9}{100}]$
$30$$[-\dfrac{3}{10}]$$[\dfrac{9}{100}]$
$38$$[\dfrac{77}{10}]$$[\dfrac{5929}{100}]$
$34$$[\dfrac{37}{10}]$$[\dfrac{1369}{100}]$
$25$$[-\dfrac{53}{10}]$$[\dfrac{2809}{100}]$
$28$$[-\dfrac{23}{10}]$$[\dfrac{529}{100}]$
$26$$[-\dfrac{43}{10}]$$[\dfrac{1849}{100}]$
$26$$[-\dfrac{43}{10}]$$[\dfrac{1849}{100}]$
$[\dfrac{1901}{10}]$
Find the population variance. Hint: The population variance is given by the formula $\sigma^2 = \dfrac{\sum (x - \mu)^2}{n}$.
$\sigma^2 = \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{80px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{80px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $\sigma^2 = \dfrac{[\dfrac{1901}{10}]}{[10]} = [\dfrac{1901}{100}]$
Therefore, Hint: The standard deviation is the square root of the variance.
$\sigma = \sqrt{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{100px}}~}$ $\sigma = \sqrt{[\dfrac{1901}{100}]} = [4.36004587]$