Formulaic Maths Problems
- get another problem:
level 1
,
level 2
,
level 3
-
link to this problem
Loading, please wait...
Find the determinant of the matrix $A = \begin{pmatrix} 2 & 16 & 15 \\ 4 & -6 & 5 \\ -14 & 11 & 12 \end{pmatrix}$ by expansion of cofactors.
Expand.
Hint: Multiply each element from the first row by its minor. The minor is the determinant of the matrix found by deleting that row and column.
$\operatorname{det} A = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Aa}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab22}}\hspace{35px}}~} \end{pmatrix} - \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ac}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad22}}\hspace{35px}}~} \end{pmatrix} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ae}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af22}}\hspace{35px}}~} \end{pmatrix}$
$\operatorname{det} A = [2] \operatorname{det} \begin{pmatrix} [-6] & [5] \\ [11] & [12] \end{pmatrix} - [16] \operatorname{det} \begin{pmatrix} [4] & [5] \\ [-14] & [12] \end{pmatrix} + [15] \operatorname{det} \begin{pmatrix} [4] & [-6] \\ [-14] & [11] \end{pmatrix}$
Calculate the first minor.
Hint: The determinant of a $2{\times}2$ matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $ad - bc$.
$\operatorname{det} \begin{pmatrix} -6 & 5 \\ 11 & 12 \end{pmatrix}= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B1}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B2}}\hspace{54px}}~} - \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B3}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B4}}\hspace{54px}}~}$
$\operatorname{det} \begin{pmatrix} -6 & 5 \\ 11 & 12 \end{pmatrix}= [-6] \times [12] - [5] \times [11]$
$= \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{54px}}~} - \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{54px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{54px}}~}$
$= [-72] - [55] = [-127]$
Calculate the second minor.
$\operatorname{det} \begin{pmatrix} 4 & 5 \\ -14 & 12 \end{pmatrix}= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D2}}\hspace{54px}}~} - \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D3}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D4}}\hspace{54px}}~}$
$\operatorname{det} \begin{pmatrix} 4 & 5 \\ -14 & 12 \end{pmatrix}= [4] \times [12] - [5] \times [-14]$
$= \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{E1}}\hspace{54px}}~} - \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{E2}}\hspace{54px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{ER}}\hspace{54px}}~}$
$= [48] - [-70] = [118]$
Calculate the third minor.
$\operatorname{det} \begin{pmatrix} 4 & -6 \\ -14 & 11 \end{pmatrix}= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F1}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F2}}\hspace{54px}}~} - \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F3}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F4}}\hspace{54px}}~}$
$\operatorname{det} \begin{pmatrix} 4 & -6 \\ -14 & 11 \end{pmatrix}= [4] \times [11] - [-6] \times [-14]$
$= \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{G1}}\hspace{54px}}~} - \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{G2}}\hspace{54px}}~} = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{GR}}\hspace{54px}}~}$
$= [44] - [84] = [-40]$
Therefore,
Hint: Substitute the minors into the first step.
$\operatorname{det} A = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H1a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H1b}}\hspace{54px}}~} - \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H2a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H2b}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H3a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H3b}}\hspace{54px}}~}$
$\operatorname{det} A = [2] \times [-127] - [16] \times [118] + [15] \times [-40]$
$= \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J1}}\hspace{54px}}~} - \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J2}}\hspace{54px}}~} + \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J3}}\hspace{54px}}~} = \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{JR}}\hspace{54px}}~}$
$= [-254] - [1888] + [-600] = [-2742]$