Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the determinant of the matrix $A = \begin{pmatrix} -13 & 1 & -17 \\ -3 & -11 & 10 \\ 15 & -3 & -12 \end{pmatrix}$ using Sarrus' rule.
Copy the columns. Hint: Copy the first two columns of $A$.
$\begin{pmatrix} -13 & 1 & -17 & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{35px}}~} \\ -3 & -11 & 10 & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A3}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A4}}\hspace{35px}}~} \\ 15 & -3 & -12 & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A5}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A6}}\hspace{35px}}~} \end{pmatrix}$ $\begin{pmatrix} -13 & 1 & -17 & [-13] & [1] \\ -3 & -11 & 10 & [-3] & [-11] \\ 15 & -3 & -12 & [15] & [-3] \end{pmatrix}$
Multiply the $\searrow$ diagonals.
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ba1}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ba2}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ba3}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BaR}}\hspace{54px}}~}$ $[-13] \times [-11] \times [-12] = [-1716]$
$\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bb1}}\hspace{54px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bb2}}\hspace{54px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bb3}}\hspace{54px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BbR}}\hspace{54px}}~}$ $[1] \times [10] \times [15] = [150]$
$\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bc1}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bc2}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Bc3}}\hspace{54px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BcR}}\hspace{54px}}~}$ $[-17] \times [-3] \times [-3] = [-153]$
Hint: Add together the results from the $\searrow$ diagonals.
So the total is ${\class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BT}}\hspace{54px}}~}}$ So the total is ${[-1719]}$
Multiply the $\swarrow$ diagonals.
$\class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ca1}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ca2}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ca3}}\hspace{54px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CaR}}\hspace{54px}}~}$ $[-17] \times [-11] \times [15] = [2805]$
$\class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cb1}}\hspace{54px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cb2}}\hspace{54px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cb3}}\hspace{54px}}~} = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CbR}}\hspace{54px}}~}$ $[-13] \times [10] \times [-3] = [390]$
$\class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cc1}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cc2}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Cc3}}\hspace{54px}}~} = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CcR}}\hspace{54px}}~}$ $[1] \times [-3] \times [-12] = [36]$
Hint: Add together the results from the $\swarrow$ diagonals.
So the total is ${\class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CT}}\hspace{54px}}~}}$ So the total is ${[3231]}$
Therefore, Hint: The determinant is the total of the $\searrow$ diagonals, minus the total of the $\swarrow$ diagonals.
$\operatorname{det} A = \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{54px}}~} - \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D2}}\hspace{54px}}~} = \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{54px}}~}$ $\operatorname{det} A = [-1719] - [3231] = [-4950]$