Formulaic Maths Problems
- get another problem:
level 1
,
level 2
,
level 3
-
link to this problem
Loading, please wait...
Let $A = \begin{pmatrix} -7 & -1 & 1 & 1 \\ 7 & -11 & 11 & 12 \end{pmatrix}$ and $B = \begin{pmatrix} -11 & 0 \\ 1 & -1 \\ -7 & 2 \\ -8 & -8 \end{pmatrix}$. Find $AB$.
Row 1, column 1:
Hint: Row 1 of $A$ is $\begin{pmatrix} -7 & -1 & 1 & 1 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -11 \\ 1 \\ -7 \\ -8 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a0}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b0}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a1}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b1}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a2}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b2}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a3}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b3}}\hspace{40px}}~}$
$[-7] \times [-11] + [-1] \times [1] + [1] \times [-7] + [1] \times [-8]$
$= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p0}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p1}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p2}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p3}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0R}}\hspace{54px}}~}$
$= [77] + [-1] + [-7] + [-8] = [61]$
Row 1, column 2:
Hint: Row 1 of $A$ is $\begin{pmatrix} -7 & -1 & 1 & 1 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 0 \\ -1 \\ 2 \\ -8 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a0}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b0}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a1}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b1}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a2}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b2}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a3}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b3}}\hspace{40px}}~}$
$[-7] \times [0] + [-1] \times [-1] + [1] \times [2] + [1] \times [-8]$
$= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p0}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p1}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p2}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p3}}\hspace{54px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1R}}\hspace{54px}}~}$
$= [0] + [1] + [2] + [-8] = [-5]$
Row 2, column 1:
Hint: Row 2 of $A$ is $\begin{pmatrix} 7 & -11 & 11 & 12 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -11 \\ 1 \\ -7 \\ -8 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a0}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b0}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a1}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b1}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a2}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b2}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a3}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b3}}\hspace{40px}}~}$
$[7] \times [-11] + [-11] \times [1] + [11] \times [-7] + [12] \times [-8]$
$= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p0}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p1}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p2}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p3}}\hspace{54px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0R}}\hspace{54px}}~}$
$= [-77] + [-11] + [-77] + [-96] = [-261]$
Row 2, column 2:
Hint: Row 2 of $A$ is $\begin{pmatrix} 7 & -11 & 11 & 12 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 0 \\ -1 \\ 2 \\ -8 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a0}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b0}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a1}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b1}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a2}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b2}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a3}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b3}}\hspace{40px}}~}$
$[7] \times [0] + [-11] \times [-1] + [11] \times [2] + [12] \times [-8]$
$= \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p0}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p1}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p2}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p3}}\hspace{54px}}~} = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1R}}\hspace{54px}}~}$
$= [0] + [11] + [22] + [-96] = [-63]$
Therefore,
$AB = \begin{pmatrix} \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c0}}\hspace{54px}}~} & \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c1}}\hspace{54px}}~} \\ \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c0}}\hspace{54px}}~} & \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c1}}\hspace{54px}}~} \end{pmatrix}$
$AB = \begin{pmatrix} [61] & [-5] \\ [-261] & [-63] \end{pmatrix}$