Formulaic Maths Problems
- get another problem:
level 1
,
level 2
,
level 3
-
link to this problem
Loading, please wait...
Let $A = \begin{pmatrix} 10 & -2 & 4 \\ 2 & 6 & 7 \\ 9 & -6 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 9 & 11 \\ 11 & 0 \\ 4 & -2 \end{pmatrix}$. Find $AB$.
Row 1, column 1:
Hint: Row 1 of $A$ is $\begin{pmatrix} 10 & -2 & 4 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} 9 \\ 11 \\ 4 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a0}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b0}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a1}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b1}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a2}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b2}}\hspace{40px}}~}$
$[10] \times [9] + [-2] \times [11] + [4] \times [4]$
$= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p0}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p1}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p2}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0R}}\hspace{54px}}~}$
$= [90] + [-22] + [16] = [84]$
Row 1, column 2:
Hint: Row 1 of $A$ is $\begin{pmatrix} 10 & -2 & 4 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 11 \\ 0 \\ -2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a0}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b0}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a1}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b1}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a2}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b2}}\hspace{40px}}~}$
$[10] \times [11] + [-2] \times [0] + [4] \times [-2]$
$= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p0}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p1}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p2}}\hspace{54px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1R}}\hspace{54px}}~}$
$= [110] + [0] + [-8] = [102]$
Row 2, column 1:
Hint: Row 2 of $A$ is $\begin{pmatrix} 2 & 6 & 7 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} 9 \\ 11 \\ 4 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a0}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b0}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a1}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b1}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a2}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b2}}\hspace{40px}}~}$
$[2] \times [9] + [6] \times [11] + [7] \times [4]$
$= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p0}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p1}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p2}}\hspace{54px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0R}}\hspace{54px}}~}$
$= [18] + [66] + [28] = [112]$
Row 2, column 2:
Hint: Row 2 of $A$ is $\begin{pmatrix} 2 & 6 & 7 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 11 \\ 0 \\ -2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a0}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b0}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a1}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b1}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a2}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b2}}\hspace{40px}}~}$
$[2] \times [11] + [6] \times [0] + [7] \times [-2]$
$= \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p0}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p1}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p2}}\hspace{54px}}~} = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1R}}\hspace{54px}}~}$
$= [22] + [0] + [-14] = [8]$
Row 3, column 1:
Hint: Row 3 of $A$ is $\begin{pmatrix} 9 & -6 & 2 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} 9 \\ 11 \\ 4 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0a0}}\hspace{40px}}~} \times \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0b0}}\hspace{40px}}~} + \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0a1}}\hspace{40px}}~} \times \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0b1}}\hspace{40px}}~} + \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0a2}}\hspace{40px}}~} \times \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0b2}}\hspace{40px}}~}$
$[9] \times [9] + [-6] \times [11] + [2] \times [4]$
$= \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0p0}}\hspace{54px}}~} + \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0p1}}\hspace{54px}}~} + \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0p2}}\hspace{54px}}~} = \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0R}}\hspace{54px}}~}$
$= [81] + [-66] + [8] = [23]$
Row 3, column 2:
Hint: Row 3 of $A$ is $\begin{pmatrix} 9 & -6 & 2 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 11 \\ 0 \\ -2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1a0}}\hspace{40px}}~} \times \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1b0}}\hspace{40px}}~} + \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1a1}}\hspace{40px}}~} \times \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1b1}}\hspace{40px}}~} + \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1a2}}\hspace{40px}}~} \times \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1b2}}\hspace{40px}}~}$
$[9] \times [11] + [-6] \times [0] + [2] \times [-2]$
$= \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1p0}}\hspace{54px}}~} + \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1p1}}\hspace{54px}}~} + \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1p2}}\hspace{54px}}~} = \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1R}}\hspace{54px}}~}$
$= [99] + [0] + [-4] = [95]$
Therefore,
$AB = \begin{pmatrix} \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c0}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c1}}\hspace{54px}}~} \\ \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c0}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c1}}\hspace{54px}}~} \\ \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr2c0}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr2c1}}\hspace{54px}}~} \end{pmatrix}$
$AB = \begin{pmatrix} [84] & [102] \\ [112] & [8] \\ [23] & [95] \end{pmatrix}$