Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Let $A = \begin{pmatrix} 4 & -1 \\ 3 & 9 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 6 & 4 \\ -2 & 2 & -3 \end{pmatrix}$. Find $AB$.
Row 1, column 1: Hint: Row 1 of $A$ is $\begin{pmatrix} 4 & -1 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a0}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b0}}\hspace{40px}}~} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0a1}}\hspace{40px}}~} \times \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0b1}}\hspace{40px}}~}$ $[4] \times [2] + [-1] \times [-2]$
$= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p0}}\hspace{54px}}~} + \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0p1}}\hspace{54px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0R}}\hspace{54px}}~}$ $= [8] + [2] = [10]$
Row 1, column 2: Hint: Row 1 of $A$ is $\begin{pmatrix} 4 & -1 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a0}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b0}}\hspace{40px}}~} + \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1a1}}\hspace{40px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1b1}}\hspace{40px}}~}$ $[4] \times [6] + [-1] \times [2]$
$= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p0}}\hspace{54px}}~} + \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1p1}}\hspace{54px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1R}}\hspace{54px}}~}$ $= [24] + [-2] = [22]$
Row 1, column 3: Hint: Row 1 of $A$ is $\begin{pmatrix} 4 & -1 \end{pmatrix}$. Column 3 of $B$ is $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2a0}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2b0}}\hspace{40px}}~} + \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2a1}}\hspace{40px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2b1}}\hspace{40px}}~}$ $[4] \times [4] + [-1] \times [-3]$
$= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2p0}}\hspace{54px}}~} + \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2p1}}\hspace{54px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c2R}}\hspace{54px}}~}$ $= [16] + [3] = [19]$
Row 2, column 1: Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 9 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a0}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b0}}\hspace{40px}}~} + \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0a1}}\hspace{40px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0b1}}\hspace{40px}}~}$ $[3] \times [2] + [9] \times [-2]$
$= \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p0}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0p1}}\hspace{54px}}~} = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0R}}\hspace{54px}}~}$ $= [6] + [-18] = [-12]$
Row 2, column 2: Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 9 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a0}}\hspace{40px}}~} \times \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b0}}\hspace{40px}}~} + \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1a1}}\hspace{40px}}~} \times \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1b1}}\hspace{40px}}~}$ $[3] \times [6] + [9] \times [2]$
$= \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p0}}\hspace{54px}}~} + \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1p1}}\hspace{54px}}~} = \class{inputBox step10}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1R}}\hspace{54px}}~}$ $= [18] + [18] = [36]$
Row 2, column 3: Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 9 \end{pmatrix}$. Column 3 of $B$ is $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$. Multiply in pairs and add the results.
$\class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2a0}}\hspace{40px}}~} \times \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2b0}}\hspace{40px}}~} + \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2a1}}\hspace{40px}}~} \times \class{inputBox step11}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2b1}}\hspace{40px}}~}$ $[3] \times [4] + [9] \times [-3]$
$= \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2p0}}\hspace{54px}}~} + \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2p1}}\hspace{54px}}~} = \class{inputBox step12}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c2R}}\hspace{54px}}~}$ $= [12] + [-27] = [-15]$
Therefore,
$AB = \begin{pmatrix} \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c0}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c1}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr0c2}}\hspace{54px}}~} \\ \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c0}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c1}}\hspace{54px}}~} & \class{inputBox step13}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Fr1c2}}\hspace{54px}}~} \end{pmatrix}$ $AB = \begin{pmatrix} [10] & [22] & [19] \\ [-12] & [36] & [-15] \end{pmatrix}$