Row 1, column 1:
Hint: Row 1 of $A$ is $\begin{pmatrix} 10 & 2 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -10 \\ -11 \end{pmatrix}$. Multiply in pairs and add the results.
Row 1, column 2:
Hint: Row 1 of $A$ is $\begin{pmatrix} 10 & 2 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 8 \\ -4 \end{pmatrix}$. Multiply in pairs and add the results.
Row 1, column 3:
Hint: Row 1 of $A$ is $\begin{pmatrix} 10 & 2 \end{pmatrix}$. Column 3 of $B$ is $\begin{pmatrix} -3 \\ -12 \end{pmatrix}$. Multiply in pairs and add the results.
Row 1, column 4:
Hint: Row 1 of $A$ is $\begin{pmatrix} 10 & 2 \end{pmatrix}$. Column 4 of $B$ is $\begin{pmatrix} 11 \\ 10 \end{pmatrix}$. Multiply in pairs and add the results.
Row 2, column 1:
Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 1 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -10 \\ -11 \end{pmatrix}$. Multiply in pairs and add the results.
Row 2, column 2:
Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 1 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 8 \\ -4 \end{pmatrix}$. Multiply in pairs and add the results.
Row 2, column 3:
Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 1 \end{pmatrix}$. Column 3 of $B$ is $\begin{pmatrix} -3 \\ -12 \end{pmatrix}$. Multiply in pairs and add the results.
Row 2, column 4:
Hint: Row 2 of $A$ is $\begin{pmatrix} 3 & 1 \end{pmatrix}$. Column 4 of $B$ is $\begin{pmatrix} 11 \\ 10 \end{pmatrix}$. Multiply in pairs and add the results.
Row 3, column 1:
Hint: Row 3 of $A$ is $\begin{pmatrix} 1 & 8 \end{pmatrix}$. Column 1 of $B$ is $\begin{pmatrix} -10 \\ -11 \end{pmatrix}$. Multiply in pairs and add the results.
Row 3, column 2:
Hint: Row 3 of $A$ is $\begin{pmatrix} 1 & 8 \end{pmatrix}$. Column 2 of $B$ is $\begin{pmatrix} 8 \\ -4 \end{pmatrix}$. Multiply in pairs and add the results.
Row 3, column 3:
Hint: Row 3 of $A$ is $\begin{pmatrix} 1 & 8 \end{pmatrix}$. Column 3 of $B$ is $\begin{pmatrix} -3 \\ -12 \end{pmatrix}$. Multiply in pairs and add the results.
Row 3, column 4:
Hint: Row 3 of $A$ is $\begin{pmatrix} 1 & 8 \end{pmatrix}$. Column 4 of $B$ is $\begin{pmatrix} 11 \\ 10 \end{pmatrix}$. Multiply in pairs and add the results.