Formulaic Maths Problems
- get another problem:
level 1
,
level 2
,
level 3
-
link to this problem
Loading, please wait...
Find $P(0 < X < 6)$, where $X$ is a Binomial variable with parameters $n = 9$, $p = 0.98$.
Find $1 - p$.
$1 - p = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}$
$1 - p = [0.02]$
Hint: For a Binomial distribution, $P(X = r) = {}^n \mathrm{C}_r \times p^r \times (1-p)^{n-r}$.
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c1}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c2}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c3}}\hspace{100px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c4R}}\hspace{100px}}~}$
$P(X = [1]) = [9] \times [0.98] \times [0.] = [0.]$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c1}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c2}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c3}}\hspace{100px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c4R}}\hspace{100px}}~}$
$P(X = [2]) = [36] \times [0.9604] \times [0.] = [0.]$
$P(X = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c0}}\hspace{35px}}~}) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c1}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c2}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c3}}\hspace{100px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c4R}}\hspace{100px}}~}$
$P(X = [3]) = [84] \times [0.941192] \times [0.] = [0.00000001]$
$P(X = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c0}}\hspace{35px}}~}) = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c1}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c2}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c3}}\hspace{100px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c4R}}\hspace{100px}}~}$
$P(X = [4]) = [126] \times [0.92236816] \times [0.] = [0.00000037]$
$P(X = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c0}}\hspace{35px}}~}) = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c1}}\hspace{100px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c2}}\hspace{100px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c3}}\hspace{100px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c4R}}\hspace{100px}}~}$
$P(X = [5]) = [126] \times [0.9039208] \times [0.00000016] = [0.00001822]$
Therefore,
Hint: Add together the individual probabilities.
$P(0 < X < 6) = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$
$P(0 < X < 6) = [0.0000186]$