Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find $P(1 < X \le 4)$, where $X$ is a Poisson variable with parameter $\lambda = 0.95$.
Hint: For a Poisson distribution, $P(X = r) = \mathrm{e}^{-\lambda} \dfrac{\lambda^r}{r!}$.
$P(X = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c0}}\hspace{35px}}~}) = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c2}}\hspace{100px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c3}}\hspace{100px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c4R}}\hspace{100px}}~}$ $P(X = [2]) = [0.38674102] \times \dfrac{[0.9025]}{[2]} = [0.17451689]$
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c2}}\hspace{100px}}~}}{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c3}}\hspace{100px}}~}} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c4R}}\hspace{100px}}~}$ $P(X = [3]) = [0.38674102] \times \dfrac{[0.857375]}{[6]} = [0.05526368]$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c2}}\hspace{100px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c3}}\hspace{100px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c4R}}\hspace{100px}}~}$ $P(X = [4]) = [0.38674102] \times \dfrac{[0.81450625]}{[24]} = [0.01312512]$
Therefore, Hint: Add together the individual probabilities.
$P(1 < X \le 4) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{100px}}~}$ $P(1 < X \le 4) = [0.24290569]$