Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find the sample standard deviation of the dataset
$x = 633.81$, $635.71$, $654.36$, $636.19$, $631.23$, $647.14$, $648.78$, $634.79$, $652.85$, $645.74$, $655.51$, $644.8$, $657.1$.
Find the sample mean. Hint: The sample mean is given by the formula $\bar{x} = \dfrac{\sum x}{n}$.
$\bar{x} = \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A2}}\hspace{54px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{AR}}\hspace{54px}}~}$ $\bar{x} = \dfrac{[8378.01]}{[13]} = [644.46230769]$
Complete the table.
$x$$x - \bar{x}$$(x - \bar{x})^2$
$633.81$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r0c1}}\hspace{80px}}~}$
$635.71$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r1c1}}\hspace{80px}}~}$
$654.36$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r2c1}}\hspace{80px}}~}$
$636.19$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r3c1}}\hspace{80px}}~}$
$631.23$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r4c1}}\hspace{80px}}~}$
$647.14$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r5c1}}\hspace{80px}}~}$
$648.78$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r6c1}}\hspace{80px}}~}$
$634.79$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r7c1}}\hspace{80px}}~}$
$652.85$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r8c1}}\hspace{80px}}~}$
$645.74$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r9c1}}\hspace{80px}}~}$
$655.51$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r10c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r10c1}}\hspace{80px}}~}$
$644.8$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r11c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r11c1}}\hspace{80px}}~}$
$657.1$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r12c0}}\hspace{54px}}~}$$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{r12c1}}\hspace{80px}}~}$
$\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{80px}}~}$
$x$$x - \bar{x}$$(x - \bar{x})^2$
$633.81$$[-10.65230769]$$[113.47165917]$
$635.71$$[-8.75230769]$$[76.60288994]$
$654.36$$[9.89769231]$$[97.96431302]$
$636.19$$[-8.27230769]$$[68.43107456]$
$631.23$$[-13.23230769]$$[175.09396686]$
$647.14$$[2.67769231]$$[7.17003609]$
$648.78$$[4.31769231]$$[18.64246686]$
$634.79$$[-9.67230769]$$[93.55353609]$
$652.85$$[8.38769231]$$[70.35338225]$
$645.74$$[1.27769231]$$[1.63249763]$
$655.51$$[11.04769231]$$[122.05150533]$
$644.8$$[0.33769231]$$[0.11403609]$
$657.1$$[12.63769231]$$[159.71126686]$
$[1004.79263077]$
Find the sample variance. Hint: The sample variance is given by the formula $s^2 = \dfrac{\sum (x - \bar{x})^2}{n-1}$.
$s^2 = \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{80px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{80px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $s^2 = \dfrac{[1004.79263077]}{[12]} = [83.73271923]$
Therefore, Hint: The standard deviation is the square root of the variance.
$s = \sqrt{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{DR}}\hspace{100px}}~}$ $s = \sqrt{[83.73271923]} = [9.15055841]$