Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Find the determinant of the matrix $A = \begin{pmatrix} 8 & -7 & 8 \\ 2 & 7 & 10 \\ 6 & 0 & -10 \end{pmatrix}$ by expansion of cofactors.
Expand. Hint: Multiply each element from the first row by its minor. The minor is the determinant of the matrix found by deleting that row and column.
$\operatorname{det} A = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Aa}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ab22}}\hspace{35px}}~} \end{pmatrix} - \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ac}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ad22}}\hspace{35px}}~} \end{pmatrix} + \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ae}}\hspace{35px}}~} \operatorname{det} \begin{pmatrix} \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af11}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af12}}\hspace{35px}}~} \\ \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af21}}\hspace{35px}}~} & \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Af22}}\hspace{35px}}~} \end{pmatrix}$ $\operatorname{det} A = 8 \operatorname{det} \begin{pmatrix} 7 & 10 \\ 0 & -10 \end{pmatrix} - -7 \operatorname{det} \begin{pmatrix} 2 & 10 \\ 6 & -10 \end{pmatrix} + 8 \operatorname{det} \begin{pmatrix} 2 & 7 \\ 6 & 0 \end{pmatrix}$
Calculate the first minor. Hint: The determinant of a $2{\times}2$ matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $ad - bc$.
$\operatorname{det} \begin{pmatrix} 7 & 10 \\ 0 & -10 \end{pmatrix}= \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B1}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B2}}\hspace{54px}}~} - \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B3}}\hspace{54px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{B4}}\hspace{54px}}~}$ $\operatorname{det} \begin{pmatrix} 7 & 10 \\ 0 & -10 \end{pmatrix}= 7 \times -10 - 10 \times 0$
$= \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{54px}}~} - \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C2}}\hspace{54px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{54px}}~}$ $= -70 - 0 = -70$
Calculate the second minor.
$\operatorname{det} \begin{pmatrix} 2 & 10 \\ 6 & -10 \end{pmatrix}= \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D1}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D2}}\hspace{54px}}~} - \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D3}}\hspace{54px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{D4}}\hspace{54px}}~}$ $\operatorname{det} \begin{pmatrix} 2 & 10 \\ 6 & -10 \end{pmatrix}= 2 \times -10 - 10 \times 6$
$= \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{E1}}\hspace{54px}}~} - \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{E2}}\hspace{54px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{ER}}\hspace{54px}}~}$ $= -20 - 60 = -80$
Calculate the third minor.
$\operatorname{det} \begin{pmatrix} 2 & 7 \\ 6 & 0 \end{pmatrix}= \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F1}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F2}}\hspace{54px}}~} - \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F3}}\hspace{54px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{F4}}\hspace{54px}}~}$ $\operatorname{det} \begin{pmatrix} 2 & 7 \\ 6 & 0 \end{pmatrix}= 2 \times 0 - 7 \times 6$
$= \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{G1}}\hspace{54px}}~} - \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{G2}}\hspace{54px}}~} = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{GR}}\hspace{54px}}~}$ $= 0 - 42 = -42$
Therefore, Hint: Substitute the minors into the first step.
$\operatorname{det} A = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H1a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H1b}}\hspace{54px}}~} - \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H2a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H2b}}\hspace{54px}}~} + \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H3a}}\hspace{54px}}~} \times \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{H3b}}\hspace{54px}}~}$ $\operatorname{det} A = 8 \times -70 - -7 \times -80 + 8 \times -42$
$= \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J1}}\hspace{54px}}~} - \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J2}}\hspace{54px}}~} + \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{J3}}\hspace{54px}}~} = \class{inputBox step9}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{JR}}\hspace{54px}}~}$ $= -560 - 560 + -336 = -1456$