Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find $P(1 \le X < 7)$, where $X$ is a Binomial variable with parameters $n = 9$, $p = 0.45$.
Find $1 - p$.
$1 - p = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}$ $1 - p = 0.55$
Hint: For a Binomial distribution, $P(X = r) = {}^n \mathrm{C}_r \times p^r \times (1-p)^{n-r}$.
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c1}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c2}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c3}}\hspace{100px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c4R}}\hspace{100px}}~}$ $P(X = 1) = 9 \times 0.45 \times 0.00837339 = 0.03391224$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c1}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c2}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c3}}\hspace{100px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c4R}}\hspace{100px}}~}$ $P(X = 2) = 36 \times 0.2025 \times 0.01522435 = 0.11098553$
$P(X = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c0}}\hspace{35px}}~}) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c1}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c2}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c3}}\hspace{100px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c4R}}\hspace{100px}}~}$ $P(X = 3) = 84 \times 0.091125 \times 0.02768064 = 0.21188146$
$P(X = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c0}}\hspace{35px}}~}) = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c1}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c2}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c3}}\hspace{100px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c4R}}\hspace{100px}}~}$ $P(X = 4) = 126 \times 0.04100625 \times 0.05032844 = 0.26003634$
$P(X = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c0}}\hspace{35px}}~}) = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c1}}\hspace{100px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c2}}\hspace{100px}}~} \times \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c3}}\hspace{100px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br4c4R}}\hspace{100px}}~}$ $P(X = 5) = 126 \times 0.01845281 \times 0.09150625 = 0.21275701$
$P(X = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br5c0}}\hspace{35px}}~}) = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br5c1}}\hspace{100px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br5c2}}\hspace{100px}}~} \times \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br5c3}}\hspace{100px}}~} = \class{inputBox step7}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br5c4R}}\hspace{100px}}~}$ $P(X = 6) = 84 \times 0.00830377 \times 0.166375 = 0.11604928$
Therefore, Hint: Add together the individual probabilities.
$P(1 \le X < 7) = \class{inputBox step8}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $P(1 \le X < 7) = 0.94562186$