Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find $P(2 < X < 7)$, where $X$ is a Binomial variable with parameters $n = 10$, $p = 0.9$.
Find $1 - p$.
$1 - p = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{A1}}\hspace{54px}}~}$ $1 - p = 0.1$
Hint: For a Binomial distribution, $P(X = r) = {}^n \mathrm{C}_r \times p^r \times (1-p)^{n-r}$.
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c1}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c2}}\hspace{100px}}~} \times \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c3}}\hspace{100px}}~} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br0c4R}}\hspace{100px}}~}$ $P(X = 3) = 120 \times 0.729 \times 0.0000001 = 0.00000875$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c1}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c2}}\hspace{100px}}~} \times \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c3}}\hspace{100px}}~} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br1c4R}}\hspace{100px}}~}$ $P(X = 4) = 210 \times 0.6561 \times 0.000001 = 0.00013778$
$P(X = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c0}}\hspace{35px}}~}) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c1}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c2}}\hspace{100px}}~} \times \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c3}}\hspace{100px}}~} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br2c4R}}\hspace{100px}}~}$ $P(X = 5) = 252 \times 0.59049 \times 0.00001 = 0.00148803$
$P(X = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c0}}\hspace{35px}}~}) = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c1}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c2}}\hspace{100px}}~} \times \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c3}}\hspace{100px}}~} = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Br3c4R}}\hspace{100px}}~}$ $P(X = 6) = 210 \times 0.531441 \times 0.0001 = 0.01116026$
Therefore, Hint: Add together the individual probabilities.
$P(2 < X < 7) = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $P(2 < X < 7) = 0.01279482$