Formulaic Maths Problems - get another problem: level 1, level 2, level 3 - link to this problem
Loading, please wait...
Find $P(X \ge 4)$, where $X$ is a Poisson variable with parameter $\lambda = 3.67$.
Hint: For a Poisson distribution, $P(X = r) = \mathrm{e}^{-\lambda} \dfrac{\lambda^r}{r!}$.
$P(X = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c0}}\hspace{35px}}~}) = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c2}}\hspace{100px}}~}}{\class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c3}}\hspace{100px}}~}} = \class{inputBox step1}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar0c4R}}\hspace{100px}}~}$ $P(X = [0]) = [0.02547647] \times \dfrac{[1]}{[1]} = [0.02547647]$
$P(X = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c0}}\hspace{35px}}~}) = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c2}}\hspace{100px}}~}}{\class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c3}}\hspace{100px}}~}} = \class{inputBox step2}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar1c4R}}\hspace{100px}}~}$ $P(X = [1]) = [0.02547647] \times \dfrac{[3.67]}{[1]} = [0.09349864]$
$P(X = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c0}}\hspace{35px}}~}) = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c2}}\hspace{100px}}~}}{\class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c3}}\hspace{100px}}~}} = \class{inputBox step3}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar2c4R}}\hspace{100px}}~}$ $P(X = [2]) = [0.02547647] \times \dfrac{[13.4689]}{[2]} = [0.17157001]$
$P(X = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c0}}\hspace{35px}}~}) = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c1}}\hspace{100px}}~} \times \dfrac{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c2}}\hspace{100px}}~}}{\class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c3}}\hspace{100px}}~}} = \class{inputBox step4}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{Ar3c4R}}\hspace{100px}}~}$ $P(X = [3]) = [0.02547647] \times \dfrac{[49.430863]}{[6]} = [0.20988732]$
Hint: Add together the individual probabilities.
$P(X \le 3) = \class{inputBox step5}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{BR}}\hspace{100px}}~}$ $P(X \le 3) = [0.50043244]$
Therefore,
$P(X \ge 4) = 1 - \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{C1}}\hspace{100px}}~} = \class{inputBox step6}{~\bbox[border:2px solid blue]{\strut\rlap{\class{inputReplace}{CR}}\hspace{100px}}~}$ $P(X \ge 4) = 1 - [0.50043244] = [0.49956756]$